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Motivation

How to securely encrypt a message?

How does the theory of elliptic curves have to do anything with
cryptography?
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The goal of this journey!

1. Problems in cryptography and their relations with elliptic curves
2. What about E/Q? Can we understand the structure of E(Q)?

Expected duration: 20 minutes
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Asymmetric Cryptography



The idea

Alice and Bob want to communicate over an insecure channel
secretly.

Bob encrypts the message, then sends the ciphertext to Alice. Alice
then decrypts the ciphertext.
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Symmetric case

Alice and Bob secretly agrees on a key first. After the key agreement,
they can encrypt messages using standard procedures such as DES
or AES.
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Asymmetric case

Alice generates a key pair: a pair of public key and a private key. The
public key is distributed publicly. The private key is kept privately.

Bob uses the public key to encrypt a message into a ciphertext, and
send that ciphertext over the insecure channel to Alice.

Alice then receives the ciphertext and decrypt using the private key.

6



Asymmetric case

Alice generates a key pair: a pair of public key and a private key. The
public key is distributed publicly. The private key is kept privately.

Bob uses the public key to encrypt a message into a ciphertext, and
send that ciphertext over the insecure channel to Alice.

Alice then receives the ciphertext and decrypt using the private key.

6



Asymmetric case

Alice generates a key pair: a pair of public key and a private key. The
public key is distributed publicly. The private key is kept privately.

Bob uses the public key to encrypt a message into a ciphertext, and
send that ciphertext over the insecure channel to Alice.

Alice then receives the ciphertext and decrypt using the private key.

6



RSA: key generation

1. Choose two prime numbers p and q. Let n = pq and
m = (p− 1)(q− 1).

2. Choose an integer e such that 1 < e < m and gcd(e,m) = 1.
3. Compute d such that 1 < d < m and de ≡ 1 (mod m). (It can be
proved that d exists)

Public key: (n, e). Private key: d.
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RSA: encryption and decryption

Bob encrypts a message M (assuming gcd(M,n) = 1 and 1 < M < n)
by computing c = Me mod n and sends c to Alice (over an insecure
channel).

Alice decrypts the ciphertext c by computing cd mod n. Suppose
D = cd mod n = (Me)d mod n. Since de ≡ 1 (mod m), de− 1 = mk for
some k ∈ Z. So D ≡ Mmk+1 (mod n).

Apply Euler’s theorem to see that Mϕ(n) = Mm ≡ 1 (mod n), so D ≡ M
(mod n). Alice then recovers the message M from D.
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RSA Problem

Given c, e,n ∈ Z such that 0 ≤ c < n, 1 < e < m, gcd(e,m) = 1.
Suppose that there exists (unknown) primes p,q such that n = pq,
and there exists (unknown) integer message 0 ≤ M < n such that
Me mod n = c. The problem is to recover such M.
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Integer factorization

If one can solve integer factorization in polynomial time, one could
also solve RSA problem in polynomial time.
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ElGamal Cryptosystem

Let (G, ·) be a group.

1. Alice and Bob agree on an element C ∈ G.
2. Alice select a ∈ N, which is the secret key, and computes A := Ca,
which is the public key.

3. Bob wants to encrypt a message M ∈ G. Bob choose a random
k ∈ N.

4. Bob computes

B1 = Ck and B2 = MAk.

5. Bob sends (B1,B2) through an insecure communication line.
6. Seeing that Ba1 = (Ck)a = Cak = (Ca)k = Ak, one can compute M
as M = MAk(Ak)−1 = B2(Ba1 )−1. Alice can then compute B2(Ba1 )−1

to recover M.
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DLP and DHP

DHP: If Eve wants to eavesdrop the message, how to do that? In other
words, given s, sa and sb, compute sab.

DLP: Knowing (G, ·) and an element s ∈ G beforehand. Suppose
sn ∈ G is given (with unknown n). The problem is to recover n ∈ Z.
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DLP on different groups

• (Z/nZ,+): easy.

• (F×
q , ·): expected to be hard, but nontrivial methods are

available. (See index calculus.)
• E(Fq): expected to be hard, no general algorithm exists,
currently.
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Elliptic curves and applications



The group law on elliptic curves
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Figure 1: An elliptic curve with two specified points an a line passing through
them, where O is the point at infinity. The sum of the two black dots is
denoted by × at (−2, 2).
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Other involved algorithms

• Lenstra’s elliptic curve factorization algorithm (ECM).
• Schoof’s algorithm to count the number of points #E(Fq).
• MOV algorithm to reduce ECDLP into DLP of direct product of
groups in the form Z/nZ.
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Over Q



The structure of E(Q)

Let E : y2 = x3 + Ax + B be defined over Q, i.e. A,B ∈ Q and consider
solutions (x, y) where x, y ∈ Q̄.

Theorem 1 (Mordell–Weil)
The group E(Q) is finitely generated.

Theorem 2 (Classification of finitely generated abelian groups)
If G is finitely generated and abelian, then there exists an integer
r ≥ 1 and a finite abelian group Gtors such that

G ∼= Zr × Gtors,

where Gtors is equal to the set of torsion points of G, i.e.

Gtors = {g ∈ G : ∃n ∈ N∗,gn = 1G}.
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Proof strategy

Theorem 3 (Weak Mordell–Weil)
For an elliptic curve E/Q, the group E(Q)/2E(Q) is finite.

Then, apply the descent procedure, which is the following.

1. Equip each point with the notion of a height.
2. Prove that for any bounded constant, there exists only finitely
many rational points under that bound.

3. Now, for each point P ∈ E(Q), write

P = Rα1 + [2]P1
P1 = Rα2 + [2]P2
...

Pk−1 = Rαk + [2]Pk.
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Proof strategy

Once we prove that this algorithm terminates, i.e. k is finite for all P,
such that Rαi ’s belong to E(Q)/2E(Q) and Pk has height no more than
C, then the set

E(Q)/2E(Q) ∪ {points with height less than or equal to C}

(which is finite) generates E(Q).
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Lutz–Nagell theorem

Theorem 4 (Lutz–Nagell)

Let E/Z : y2 = x3 + Ax + B. Let P = (x, y) ∈ E(Q). If P has finite order,
then x, y ∈ Z. If furthermore y 6= 0, then y2 | 4A3 + 27B2.

Any elliptic curve E/Q is isomorphic to another elliptic curve E′/Z.
This proves that E(Q)tors is finite, and also gives a way to compute
the subgroup.
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Next steps

E(Q)tors can be computed easily, but there is (still) no general
algorithm to compute the rank of an elliptic curve. Further, the rank
seems to have some extra properties. This is one possible area of
study and research.

We don’t know if RSA problem, integer factorization, DLP, DHP are
really hard or actually easy. This also allows further studies in
computational complexity theory to classify them as P, NP-complete,
or NP-intermediate.

Mordell–Weil theorem, in full generality, isn’t only for E(Q), but also
for E(K) for any algebraic number field K (i.e. finite extension of Q).
The statement can be proved in full generality using a little bit of
algebraic number theory, which is a possible area of study in the
future.
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Appendix



Computation

Theorem 5
If P1,P2 ∈ E with coordinates (x1, y1) and (x2, y2) respectively, such
that P1 6= ±P2, then

x(P1 + P2) =
(
y2 − y1
x2 − x1

)2

+ a1
(
y2 − y1
x2 − x1

)
− a2 − x1 − x2,

y(P1 + P2) = −
(
y2 − y1
x2 − x1

+ a1
)
x(P1 + P2)−

(
y1x2 − y2x1
x2 − x1

)
− a3.

If P1 = −P2 then P1 + P2 = O. If P1 = P2 then consider the following
duplication formula for P = (x, y) ∈ E.

x([2]P) =
(
3x2 + 2a2x + a4 − a1y

2y + a1x + a3

)2

+ a1
(
3x2 + 2a2x + a4 − a1y

2y + a1x + a3

)
− a2 − 2x,

y([2]P) = −
(
3x2 + 2a2x + a4 − a1y

2y + a1x + a3
+ a1

)
x([2]P)− −x3 + a4x + 2a6 − a3y

2y + a1x + a3 − a3.

This is given in Silverman 2009, Group Law Algorithm III.2.3.
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