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The goal of this journey!

To prove the group law of elliptic curves using the Riemann–Roch
theorem.

Expected duration: 20 minutes

2



The goal of this journey!

To prove the group law of elliptic curves using the Riemann–Roch
theorem.

Expected duration: 20 minutes

2



Notation

We use K to denote a field. We assume that K is perfect, i.e. all
algebraic extensions of K are separable. However, we don’t assume
that K is algebraically closed. We denote by K̄ the algebraic closure
of K.

If we’re working on dimension n, we denote by An the affine space of
K̄ of dimension n, i.e. An = K̄n.

Pn will be the projective space of dimension n.1

1We will not go through the rigorous description here since there is no time. See
appendix for details.
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Curves



Algebraic set

Given a set S of polynomials in K̄[x1, . . . , xn] and let I be the ideal
generated by S. We define the (affine) algebraic set of I to be the set

VI := {P ∈ An : f(P) = 0 for all f ∈ I}.

This is a subset of An.
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Example
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Figure 1: An affine algebraic set
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Curve

A curve is a projective variety of dimension one.
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Figure 2: Curves defined as projective closures of affine algebraic sets in R2

Note that this doesn’t mean every curve is defined on P1. One can
define a projective variety on Pn that has dimension one, and that
would also count as a curve.
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Note

Note that here, we’ll not consider the notion of “curves” in its full
generality since we will not have time to go through the concept of
projective set, algebraic variety, dimension and smoothness.

For now, we consider affine algebraic set that “looks like dimension
one”, and note that it can be extended to a projective algebraic set.
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Things that are not curves!
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Figure 3: A surface, and an algebraic set whose ideal is not prime
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The coordinate ring

For an affine variety V ⊆ An, we have the affine coordinate ring:

K̄[V] := K̄[X1, . . . , Xn]/I(V),

Its function field:
K̄(V) := Frac(K̄[V]).

Example
Suppose V is defined from the polynomial (x2 + y2 − 1)3 − 4x2y3 = 0.

Then, in K̄[V], one sees that (x2 + y2 − 1)3 and 4x2y3 are the same
object.
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Analogue: p-adic valuation

The set Z can be localized at any prime ideal (p) as

Z(p) := {a/b : a,b ∈ Z,b /∈ (p)}.

Then one can observe that (p) is the unique maximal ideal in Z(p), so
there is the following natural valuation

ν :

{
Z(p) → N ∪ {∞}
x 7→ max{n ∈ N ∪ {∞} : x ∈ (p)n}.

This is the usual p-adic valuation, i.e. if p = 3 then
ν(18) = ν(3 · 3 · 2) = 2, ν(7) = 0, ν(75) = 1, etc.

One can extend this to Frac(Z(p)) = Q as ν(a/b) = ν(a)− ν(b) for all
a,b ∈ Z(p). It is not hard to check that this is well-defined.
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Localization at a point

Let C be a curve in Pn, and let P ∈ C be a point on it. We define the
ideal MP as

MP := {f ∈ K̄[V] : f(P) = 0}.

It is a maximal ideal because the function

ϕ :

{
K̄[V]/MP → K̄
f 7→ f(P)

is an isomorphism between a quotient of a ring by an ideal to a field.

Now we can “localize” the coordinate ring as

K̄[V]P := {F ∈ K̄(V) : F = f/g for some f,g ∈ K̄[V] with g(P) 6= 0}.
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The discrete valuation

One can check that K̄[V]P is a principal ideal domain with a unique
maximal ideal, which is MP. (admitted here)

Then, we define the following object, called the order of f at P,
denoted by ordP(f), defined as the image of the function

ordP :
{
K̄[V]P → N ∪ {∞}
f 7→ max{n ∈ N ∪ {∞} : f ∈ Mn

P}.

at f, with the convention that the maximum of an infinite subset of
the naturals is∞.

One can extend this valuation to Frac(K̄[V]P) = K̄(V) as
ordP(f/g) = ordP(f)− ordP(g). We can check that it is a well-defined
function ordP : K̄(V) → Z ∪ {∞}.
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An example

Consider the curve y2 = x3 + x. Consider P = (0, 0). The ideal MP is
generated by x and y. The ideal M2

P is generated by x2, xy and y2, but
x = y2 − x3 so it can be generated by y2 alone. This also tells us that
y ∈ MP but y /∈ M2

P, so ordP(y) = 1. Now, consider that

2 ordP(y) = ordP(y2) = ordP(x3 + x) = ordP(x) + ordP(x2 + 1)

but x2 + 1 is nonzero at P, so its order is 0. This means ordP(x) = 2.
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The Riemann–Roch Theorem



Divisors

Let C be a curve. One can define the set Div(C) to be the set of
formal sums ∑

P∈C
nP(P)

where nP ∈ Z and there are only finitely many P ∈ C such that nP 6= 0,
and we define its degree to be

∑
P∈C nP. Observe that Div(C) forms

an abelian group.

14



Principal divisors

Let f ∈ K̄(C)∗ then we can define div(f) to be∑
P∈C

ordP(f)(P).

Observe that the image H = f(K̄(C)∗) makes a (normal) subgroup of
Div(C). We then define Pic(C) := Div(C)/H. We also define the
equivalence relation ∼, and say D1 ∼ D2 whenever D1 − D2 ∈ H.
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Div0 and Pic0

Proposition 1 (admitted here)
Let C be a curve and let f ∈ K̄(C)∗.

• div(f) = 0 if and only if f ∈ K̄.
• deg(div(f)) = 0.

We denote by Div0(C) the subgroup of Div(C) with elements of
degree 0. Similarly, Pic0(C) is the subgroup of Pic(C) where each
divisor in each equivalence class of Pic(C) has degree zero. The
degree is the same in each divisor class due to this proposition.
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Differentials

For any f ∈ K̄(C), we write df as a symbol. Now one can impose the
following equivalence

• d(x+ y) = dx+ dy for all x, y ∈ K̄(C),
• d(xy) = xdy+ ydx for all x, y ∈ K̄(C),
• da = 0 for all a ∈ K̄.

The set of those symbols modulo this equivalence is denoted by ΩC,
and is called the space of (meromorphic) differential forms on C.

Proposition 2
ΩC is a 1-dimensional K̄(C)-vector space. (admitted here)
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Divisor of a differential

Proposition 3 (admitted here)
Let P ∈ C and let t be a uniformizer at P. For every ω ∈ ΩC, there exists
a unique g ∈ K̄(C) depending on ω and t such that

ω = gdt.

However, the quantity ordP(g) is the same for different g defined from
different uniformizers t. We call this quantity the order of ω at P and
denote it by ordP(ω).

Furthermore, for a fixed ω ∈ ΩC, the quantity ordP(ω) is nonzero for
finitely many P ∈ C.

Definition 4
For any ω ∈ ΩC, we define div(ω) to be the formal sum∑

P∈C
ordP(ω)(P).

18



The canonical divisor class

Since ΩC is one-dimensional, for any ω1, ω2 ∈ ΩC \ {0}, there exists
g ∈ K̄(C) such that ω1 = gω2. This means

div(ω1) = div(gω2) = div(g) + div(ω2).

That is, div(ω1) and div(ω2) belong to the same class in Pic(C).

Any divisor in this class is called a canonical divisor. Later on, we will
denote by KC any canonical divisor.
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A partial order on divisors

Let D =
∑

P∈C nP(P) be a divisor on a curve C. We say that D is
positive and write D ≥ 0 if nP ≥ 0 for all P ∈ C.

We extend this partial order and say D1 ≤ D2 whenever D2 − D1 ≥ 0.

Consider the following vector space defined for any divisor
D ∈ Div(C):

L(D) = {f ∈ K̄(C)∗ : div(f) ≥ −D} ∪ {0}.

Then L(D) is a finite dimensional K̄-vector space (admitted here). Its
dimension is denoted by ℓ(D).
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The main theorem of Riemann–Roch

The original question before the Riemann–Roch theorem was about
determining ℓ(D) from a given D. Riemann came up with the
inequality

ℓ(D) ≥ degD− g+ 1

where there is a constant g that makes this true for all D ∈ Div(C).

After that, Roch finished the inequality, giving us the celebrated main
theorem as follows.

Theorem 5 (Riemann–Roch theorem)
Let C be a smooth curve and let KC be a canonical divisor on C. There
is an integer g ≥ 0, called the genus of C, such that for every
D ∈ Div(C),

ℓ(D)− ℓ(KC − D) = degD− g+ 1.
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Riemann–Roch toolbox

Corollary 6

• ℓ(KC) = g.
• deg KC = 2g− 2.
• If degD > 2g− 2 then ℓ(D) = degD− g+ 1.

This can be easily proved using different substitutions for D in the
Riemann–Roch theorem.
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Elliptic Curves



Curves of genus zero

Before going to elliptic curves, let us admit the following useful
result.

Theorem 7 (admitted here)
The following are equivalent.

• C is isomorphic to P1.
• C has genus 0.
• There exists distinct points P,Q ∈ C such that (P) ∼ (Q).
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Smooth curves of genus one with a specified base point

For now, we define elliptic curves as smooth curves of genus one
with a specified base point.

Let us prove that in such curve E, we can define a group law on its
points which is isomorphic to Pic0(E).
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σP0(P,Q)

Proposition 8
Let C be a smooth curve of genus one with a specified base point P0.
For all P,Q ∈ C there exists a unique R ∈ C such that
(P) + (Q) ∼ (R) + (P0). We denote this point R by σP0(P,Q).
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Proof

Proof.

• Define D = (P) + (Q)− (P0). Since it has degree 1, one can apply
the Riemann–Roch toolbox to see that ℓ(D) = degD− g+ 1 = 1.

• Pick an element f ∈ L(D) \ {0}. By definition, div(f) ≥ −D, so
div(f) can be written as (P0)− (P)− (Q) + D′ for some positive
divisor D′.

• Since deg div(f) = 0, the quantity degD′ must be 1, so D′ = (R)
for some R ∈ C. This proves the existence.

• Now suppose there are R1,R2 ∈ C such that
(P) + (Q) ∼ (R1) + (P0) ∼ (R2) + (P0) then (R1) ∼ (R2). If R1 6= R2
then the curve has genus 0, a contradiction.

• Therefore, R1 = R2. This proves the uniqueness.
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Equipping C with an abelian group structure

Proposition 9
For a smooth curve C of genus one, for any P0 ∈ C one can turn C into
an abelian group with the group operation being σP0 .

Proof.
Let us only prove the associativity here (the rest will be in the
appendix). Let P,Q,R ∈ C and let us show that
σP0(σP0(P,Q),R) = σP0(P, σP0(Q,R)). Let S = σP0(Q,R), T = σP0(P, S),
U = σP0(P,Q), and V = σP0(U,R). We have

(Q) + (R) ∼ (S) + (P0)
(P) + (S) ∼ (T) + (P0)
(P) + (Q) ∼ (U) + (P0)
(U) + (R) ∼ (V) + (P0).

Therefore, (P) + (Q) + (R) ∼ (V) + 2(P0) ∼ (T) + 2(P0), i.e. (V) ∼ (T).
Hence, V = T. 27



It is actually Pic0(C)!

Proposition 10
For a smooth curve C of genus one and any P0 ∈ C, the group (C, σP0)
is isomorphic to (Pic0(C),+).

Proof.
Define

κ :

{
C → Pic0(C)
P 7→ [(P)− (P0)]∼.

It is not hard to show that κ is a group isomorphism.
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Conclusion

This proves that for an elliptic curve C, Pic0(C) gives a group
structure to C.

Furthermore, this algebraic group law also coincides with the
geometric group law.
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Geometric group law

Consider the following figure, visualized on R2.
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Figure 4: An elliptic curve with two specified points an a line passing through
them 30



A visualization

−10 −5 5 10

−10

−5

5

10

Figure 5: An elliptic curve with two specified points an a line passing through
them, where O is the point at infinity. The sum of the two black dots is
denoted by × at (−2, 2).
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Projective Geometry

Formally, we define Pn(K) as the quotient of An+1(K) \ {0} by the
equivalence relation

(x0, . . . , xn) ∼ (y0, . . . , yn) if and only if there exists λ ∈ K
such that xi = λyi for all i ∈ {0, . . . ,n}.

Note that we denote this equivalence class by [x0, . . . , xn], and also
note that [0, . . . , 0] /∈ Pn!
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Examples of homogenization

Example
Consider the polynomial f defined by f(x, y) = x2 + y2 − 1.

Its homogenized form is f∗(X, Y, Z) = X2 + Y2 − Z2.

Example
Consider the polynomial f defined by f(x, y) = y2 − x3 − 17.

Its homogenized form is f∗(X, Y, Z) = Y2Z− X3 − 17Z3.
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Ideal of an algebraic set

For a given algebraic set V ⊆ An, the set

I(V) := {f ∈ K̄[x1, . . . , xn] : f(P) = 0 for all P ∈ V}

forms an ideal. We call this ideal the ideal of V.

If this ideal is prime, then we say that V is a variety.
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Varieties generated by a single polynomial

We admit the following result.

Theorem 11
Let f ∈ K̄[x1, . . . , xn] be irreducible and let I be the ideal generated by
f. Then VI is an algebraic variety of dimension n− 1.

The converse is also true, i.e., any algebraic variety of dimension
n− 1 can be expressed as a variety generated by an ideal generated
by a single polynomial.
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Projective closure

Given an irreducible polynomial f ∈ K̄[x1, . . . , xn], we can homogenize
it to f∗ ∈ K̄[x0, . . . , xn] so that we can define a projective variety
V̄(f) := {P ∈ Pn : f∗(P) = 0}.

Later on, we often just say “let C be a curve generated by f” instead
of going through the details of constructing the projective closure,
proving that the ideal is prime, etc.
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Identifying some subsets of Pn with An

Consider the projective space Pn. Pick an integer i ∈ {0, . . .n} and
consider the subset

Ui := {[x0, . . . , xn] ∈ Pn : xi 6= 0}.

One can explicitly identify Ui with An by the bijection ϕ defined as

ϕ :

Ui → An

[x0, . . . , xn] 7→
(
x0
xi , . . . ,

xi−1
xi ,

xi+1
xi , . . . ,

xn
xi

)
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Homogenizing an equation

If we have an equation, say, y2 = x3 + 17, defined in A2(K). We can
homogenize it into Y2Z = X3 + 17Z3, which is defined in P2(K).

Procedurally, if we have a function f ∈ K[X1, . . . , Xn]. The
homogenization is

(x0, . . . , xn) 7→ xdeg fi f
(
x0
xi
, . . . ,

xi−1
xi

,
xi+1
xi

, . . . ,
xn
xi

)
.

For the function f(x, y) := y2 − x3 − 17, the homogenization with
respect to z, written as f∗, is

(x, y, z) 7→ z3f
(x
z ,
y
z

)
= z3

(
y2
z2 − x3

z3 − 17
)

= y2z− x3 − 17z3.

This gives the equation f∗(X, Y, Z) = 0, i.e. Y2Z = X3 + 17Z3.
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Remark

Note that for any λ ∈ K∗, f∗(X, Y, Z) = 0 holds if and only if
f∗(λX, λY, λZ) = 0. This makes f∗ well-defined in Pn(K).

From an affine polynomial f ∈ K[x1, . . . , xn], one can use this process
to define f∗ so that the solution to f(P) = 0 injects into the set of
solutions to f∗(P) = 0. This gives a projective closure of an algebraic
set.
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The projective case

We define
Ui := {[x0, . . . , xn] ∈ Pn : xi 6= 0}

and we may identify Ui with An by the bijection ϕ defined as

ϕ :

Ui → An

[x0, . . . , xn] 7→
(
x0
xi , . . . ,

xi−1
xi ,

xi+1
xi , . . . ,

xn
xi

)
.

If V ⊆ Pn is a projective variety, then one can choose one of Ui’s such
that Ui ∩ V 6= ∅ and consider the affine subset Ṽ := ϕ(V ∩ Ui)2.

Then we define K̄[V] and K̄(V) to be K̄[Ṽ] and K̄(Ṽ), respectively.

2Note that Ṽ is not a standard notation.
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Useful properties

The valuation enjoys the following useful properties. (admitted here)

• For all f,g ∈ K̄(V), ordP(fg) = ordP(f) + ordP(g).
• For all f,g ∈ K̄(V), ordP(f+ g) ≥ min(ordP(f) + ordP(g)).
• For all f,g ∈ K̄(V), if ordP(f) 6= ordP(g) then

ordP(f+ g) = min(ordP(f), ordP(g)).
• For all f ∈ K̄(V), ordP(f) = ∞ if and only if f = 0.
• There exists an element t ∈ K̄(V) such that ordP(t) = 1. We call
this element the uniformizer at P.
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Smooth curves

Recall figure 1:
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At the origin, in the last two curves, the tangent is not well-defined.
This motivates the notion of smoothness.

For the special case of curves defined by a single polynomial
f ∈ K̄[x1, . . . , xn], we say that a point P is singular or non-smooth if

∂x1 f(P) = ∂x2 f(P) = · · · = ∂xn f(P) = 0.

And we say it is smooth or nonsingular otherwise. A curve is smooth
if every point is smooth.
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Proof that σP0 is an abelian group law

We proved that it is associative. We’re left with proving
commutativity, identity, and inverse.

Proof.
(Commutativity) It is obvious that σP0(P,Q) = σP0(Q,P) by definition
of σP0 and the commutativity of divisors.

(Identity) Let P ∈ C and let Q = σP0(P,P0). By definition,
(P) + (P0) ∼ (Q) + (P0) so P = Q. This proves that P0 is neutral.

(Inverse) Let P ∈ C. Consider another structure σP and let
Q = σP(P0,P0). Then, by definition, (P0) + (P0) ∼ (Q) + (P). Therefore,
σP0(P,Q) = P0 due to uniqueness of the solution. Therefore, Q is an
inverse of P for σP0 .

This completes the proof.
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Proof that κ is a group isomorphism

Proof.
First, we can obviously see that κ is injective because if
(P)− (P0) ∼ (Q)− (P0) then P = Q (using the fact that the genus is
one).

Now, suppose [D]∼ ∈ Pic0(C), then define D′ = D+ (P0) and apply the
Riemann–Roch toolbox to see that ℓ(D′) = 1. Pick any f ∈ L(D′) \ {0}
and observe that div(f) ≥ −D− (P0). But deg div(f) = 0 so div(f)
must be −D− (P0) + (P) for some P ∈ C. This means D ∼ (P)− (P0),
i.e. κ(P) = [D]∼. This proves the surjectivity.

Now, observe that for all P,Q ∈ C,

κ(σP0(P,Q)) = [σP0(P,Q)− (P0)]∼ = [(P)+(Q)−2(P0)]∼ = κ(P)+κ(Q).

This proves that κ is a homomorphism.

This completes the proof.
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A line hits three points

We consider the special case of the smooth curve C ⊆ P2 defined
from an equation giving algebraic set in A2 and taking the projective
closure.

Given any two points P,Q (not necessarily distinct) on C, there exists
a unique line that pass through them (if P = Q, this is not unique,
and we impose this line to be tangent to C), and this line hits C at
exactly three points (counting multiplicity and points at infinity).

The point other than P and Q that is hit by this line is called P ⋆ Q.
We now join the point P ⋆ Q with the base point P0, and the other
point that is hit by this line is now called P+ Q, i.e. this is the result
of the group law on P and Q.

Note that this is made intuitive by visualizing in R2, but the
geometric manipulation gives an algebraic procedure, which can
therefore be extended to other field K in general.
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