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Abstract

This bachelor thesis is a continuation of the lab research project “Introduction to Elliptic Curves”.
In this thesis, emphasis is given on understanding the applications of elliptic curves in cryptography
and the theory behind elliptic curves over Q, i.e. Mordell–Weil theorem. This thesis will therefore
be divided into two corresponding parts: Cryptographic applications and Mordell–Weil theorem.
The implementation of the algorithms are given in the appendix.

Contents

1 Cryptographic Applications 2
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Hasse’s Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Inverse Limit and Profinite Group . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Isogenies and Separability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 The Frobenius Map on Curves . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 The Dual Isogeny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.5 A form of The Cauchy–Schwarz Inequality . . . . . . . . . . . . . . . . . . . 15
1.2.6 The Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Integer Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 The RSA Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.2 Pollard’s p− 1 algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.3 Lenstra’s elliptic curve factorization algorithm (ECM) . . . . . . . . . . . . 20

1.4 The Discrete Logarithm Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.1 The ElGamal Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.2 Discrete Logarithm Problem (DLP) and ECDLP . . . . . . . . . . . . . . . 21
1.4.3 Diffie–Hellman Key Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.4 Elliptic Curve Digital Signature Algorithm (ECDSA) . . . . . . . . . . . . 22

1.5 Schoof’s algorithm to count #E(Fq) . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.1 The m-Torsion Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.2 The Tate Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.3 The Weil Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.4 The Characteristic Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.5 The Algorithm of Schoof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 The Mordell–Weil Theorem for E/Q 28
2.1 The Lutz–Nagell Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 The Weak Mordell–Weil Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Ring of Integers in an Algebraic Number Field . . . . . . . . . . . . . . . . 35
2.2.2 The Map φ : E(K)→ (K×/K×sq

)3 . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 Mordell–Weil Theorem for E/Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1 Height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.2 Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A Implementation 47
A.1 Arithmetics of finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.1.1 Itoh–Tsujii Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.1.2 Shanks–Tonelli Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.2 Random points on an elliptic curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.3 Source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Acknowledgement

The author greatly thanks his supervisor, Professor Diego Izquierdo, for his help with guiding
through further topics in elliptic curves. The author thanks his friend, Pitchayut Saengrungkongka,
for minor help with algebraic number theory. The author also thanks his parents (Taweesuk Pong-
nakintr and Tipawan Pongnakintr), his friends (Dr. Natkamon Tovanich and Yoshimi-Théophile
Etienne), and the clinical psychologist (Ms. Anne Mortureux) for emotional support through tough
times.

1



Chapter 1

Cryptographic Applications

1.1 Introduction
The first part of the thesis, i.e., this chapter, concerns about the computational aspects of the theory
of elliptic curves, mainly with a focus towards cryptography. The most notable one is the ElGamal
Public Key Cryptosystem, which is now a standard cryptosystem in asymmetric cryptography. We
start by an important result of Hasse and go on towards the two main computational problems
in cryptography: Integer factorization and Discrete Logarithm Problem (DLP). After that we will
consider other miscellaneous algorithms involving the use of elliptic curves.

Recall that we denote by K the base field, which, in this chapter, is often a finite field: Fpn

with p prime and n ∈ N∗. The notation K̄ denotes the algebraic closure of K, which is well-defined
and uniquely defined. An elliptic curve can be described as a smooth projective curve of genus one
with a specified base point. However, in this context and later on we will often use the fact [22,
III.3.1] that such curve can be parametrized by a Weierstrass equation of the form

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

with a1, a2, a3, a4, a6 ∈ K̄. If a1, a2, a3, a4, a6 ∈ K, we say that E is defined over K and write E/K.
We dehomogenize the equation and write E : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6, together
with an extra point at infinity O = [0, 1, 0]. We will normally use O to be the base point.

Here we recall the basic notions involving varieties and maps between them, to be used later.
The main reference is [22, I, II.1, II.2]. Since the basic notions are not the main focus of this thesis,
this section will try to give only what we need to use, as quickly as possible, with an obvious lack
of examples.

Definition (Affine space). We denote by An(K) the space Kn. Implicitly, An means An(K̄).

Definition (Affine algebraic set). A set V ⊆ An is said to be an affine algebraic set if it is the set
of zeros of an ideal, i.e., there exists an ideal I ⊆ K̄[X1, . . . , Xn] such that

V = {(x1, . . . , xn) ∈ An : for all f ∈ I, f(x1, . . . , xn) = 0}.

Definition (Ideal of an affine algebraic set). For a given affine algebraic set V , we denote by I(V )
the ideal

{f ∈ K̄[X1, . . . , Xn] : f(P ) = 0 for all P ∈ V }.

Recall that for a given ideal I, I(VI) isn’t necessarily I, but for a given algebraic set V , VI(V ) is V .

Definition (K-rational points of an affine algebraic set). An affine algebraic set V ⊆ An is said
to be defined over K if I(V ) can be generated by polynomials in K[X1, . . . , Xn]. In such case, we
denote by V (K) the set of K-rational points V ∩ An(K).

Definition (Affine algebraic variety). An affine algebraic set over An is said to be a variety if its
ideal is a prime ideal in K̄[X1, . . . , Xn].

Definition (Coordinate ring). Given an algebraic set V ⊆ An, we denote by K̄[V ] the quotient

K̄[T ]/I(V )

and call this structure the coordinate ring of V . Similarly K[V ] is defined as K[T ]/(I(V )∩K[T ]).
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Definition (Function field). The field of fractions of the coordinate ring K̄[V ] is called the function
field, and is written as K̄(V ), i.e., K̄(V ) := Frac(K̄[V ]). Similarly, K(V ) := Frac(K[V ]).

Definition (Projective space). We denote by Pn(K) the space Kn+1 \ {0} modulo the equivalence
relation ∼ defined by (x0, . . . , xn) ∼ (y0, . . . , yn) if and only if there exists λ ∈ K̄× such that
xi = λyi for all i ∈ {0, . . . , n}. We denote such equivalence class of (x0, . . . , xn) by [x0, . . . , xn].
We denote by Pn the space Pn(K̄).

Definition (Homogeneous polynomial). A polynomial f ∈ K̄[X0, . . . , Xk] is said to be homoge-
neous of degree d if f(λX0, . . . , λXk) = λdf(X0, . . . , Xk) for all λ ∈ K̄. An ideal I ⊆ K̄[X0, . . . , Xk]
is said to be a homogeneous ideal if it is generated by homogeneous polynomials.

Definition (Projective algebraic set). A set V ⊆ Pn is said to be a projective algebraic set if it is
the set of zeros of a homogeneous ideal, i.e. there exists a homogeneous ideal I ⊆ K̄[X0, . . . , Xn]
such that

V = {[x0, . . . , xn] ∈ Pn : for all homogeneous f ∈ I, f(x0, . . . , xn) = 0}.

In general, given a homogeneous ideal I, we denote by VI this set, and call it “the algebraic set
generated by I”.

Definition (Ideal of a projective algebraic set). Let V ⊆ Pn be a projective algebraic set, then we
define its ideal I(V ) to be the ideal generated by the set

{f ∈ K̄[X0, . . . , Xn] : f is homogeneous and for all P ∈ V, f(P ) = 0}.

Definition (K-rational points of a projective algebraic set). A projective algebraic set V ⊆ Pn is
said to be defined over K if I(V ) can be generated by homogeneous polynomials in K[X0, . . . , Xn].
In such case, we denote by V (K) the set of K-rational points V ∩ Pn(K).

Definition (Projective variety). A projective algebraic set V is said to be a projective variety if
I(V ) is a prime ideal in K̄[X0, . . . , Xn].

Now, for a projective variety, one can identify a subset of it with an affine variety by using the
map

φi :

{
An → Pn

(y1, . . . , yn) 7→ [y1, . . . , yi−1, 1, yi, . . . , yn]

which is injective. The image of this map is the set

{[x0, . . . , xn] ∈ Pn : xi 6= 0}.

We denote this set by Ui, so that φ−1
i : Ui → An is a well-defined bijection. Now we introduce the

notions of coordinate ring and function field for projective variety as follows. Note that the notion
of φi and Ui will be used in the next two definitions.

Definition. Let V be a projective variety and let W := φ−1
i (V ∩Ui) for some i ∈ {0, . . . , n}. Then

W is an affine variety in An. The coordinate ring K̄[V ] for the projective variety V is defined as
K̄[W ], and the function field K̄(V ) for the projective variety V is defined as K̄(W ). It is admitted
that this is well-defined, i.e., it doesn’t depend on the choice of i.

Definition (Smooth points). For an affine variety V ⊆ An, let f1, . . . , fm ∈ K̄[X1, . . . , Xn] be
such that {f1, . . . , fm} is a generating set for the ideal I(V ). Let P ∈ V , then V is smooth at P if
the m× n matrix (

∂fi
∂Xj

(P )

)
1≤i≤m
1≤j≤n

has rank n − dimV . If V is smooth at every point, then we say that V is smooth. Now, for a
projective variety V ⊆ Pn, a point P ∈ V is said to be smooth if φ−1

i (P ) is smooth in the affine
variety φ−1

i (V ∩ Ui) for some i ∈ {0, . . . , n} such that P ∈ Ui.

Definition (Rational map). Let V1, V2 ⊆ Pn(K̄) be projective varieties. A collection of functions
f0, . . . , fn ∈ K̄(V1) is said to define a rational map φ if for every point P ∈ V1 at which f0, . . . , fn
are all defined, φ(P ) = [f0(P ), f1(P ), . . . , fn(P )] ∈ V2.

Furthermore, we say that φ is defined over K if there exists λ ∈ K̄× such that λf0, . . . , λfn ∈
K(V1).
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Remark. Even if we write “φ : V1 → V2 is a rational map”, this does not assume that φ is
well-defined at every point of V1! The notion of being defined at a point is given with the next
definition.
Definition (Regular points). A rational map φ = [f0, . . . , fn] : V1 → V2 is said to be regular at
P ∈ V1 if there is a function g ∈ K̄(V1) such that for each i ∈ {0, . . . , n}, gfi can be evaluated at
P , and that there exists some i for which (gfi)(P ) 6= 0. If this is the case, we define the evaluation
of φ at P as

φ(P ) = [(gf0)(P ), . . . , (gfn)(P )] ∈ V2.
Note that it may be necessary to take different g’s at different P ’s, and if a rational map is regular
everywhere, we say that it is a morphism.

The following part about transcendence degree utilizes [23, Tag 030D] as the main reference.
Definition (Algebraic independence). Let K be a field. Let L/K be an extension. Let F = {αi}i∈I

be a family of elements in L. We say that F is algebraically independent over K if the evaluation
map {

K[{Xi}i∈I ] → L

P 7→ P ((αi)i∈I)

(evaluating the polynomial P at (xi)i∈I) is injective.
Definition (Transcendence basis). A transcendence basis of L/K is a set F = {αi}i∈I of elements
in L such that F is algebraically independent over K and L/K((αi)i∈I) is an algebraic extension.
Definition (Transcendence degree). Let L/K be a field extension. Then the transcendence degree
of L over K, denoted by trdegK(L), is defined by the cardinality of a transcendence basis of L/K.
Note that this requires proving that all transcendence bases have the same cardinality, which we
refer to [23, Tag 030D, 9.26.3].
Definition (Dimension of a variety). The dimension of a variety V , denoted by dim(V ), is defined
as trdegK̄(K̄(V )). This is valid for both the affine case and the projective case.
Definition (Curve). A curve is a projective variety of dimension one.

After on, by convention, we let p denote any prime integer, and we let q = pn denote a (strictly-
positive-integer-) power of prime.

1.2 Hasse’s Bound
The main question about elliptic curve over finite fields is about bounding the number of points
(in Fq) on a curve E/Fq. Consider a curve E/Fq defined by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with a1, a2, a3, a4, a6 ∈ Fq. For any fixed x ∈ Fq, there exists at most two solutions y ∈ Fq, so
#E(Fq) ≤ 2q + 1.

It is conjectured in the thesis of Emil Artin [3] that q + 1 − 2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q.

This turns out to be true as proven by Helmut Hasse. We will complete the proof later but here
we note that there are a few claims to be proven first:

• The Galois group Gal(F̄q/Fq) is the topological closure of the subgroup generated by

Frobq : x 7→ xq.

(Note that Frobq ∈ Gal(F̄q/Fq), and the topology in Gal(F̄q/Fq) is the profinite group
topology–we will discuss in detail later)

• The map (1− φ) : E → E is separable. ([22, III.5.5])

• If an isogeny φ : E1 → E2 is separable then # kerφ = degφ. ([22, II.4.10c])

• If A is an abelian group and d : A→ Z is a positive definite quadratic form, then

|d(ψ − φ)− d(φ)− d(ψ)| ≤ 2
√
d(φ)d(ψ) for all ψ, φ ∈ A.

([22, V.1.2], a form of Cauchy–Schwarz inequality, and we will define what it means to be a
positive definite quadratic form in this context later)

To begin, it is better to recall and give a proper introduction to inverse limit and profinite
group.
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1.2.1 Inverse Limit and Profinite Group
Remark. This subsection utilizes [20], the lecture notes of 18.785 at MIT, given by Pitchayut
Saengrungkongka (Mark), a friend of mine. His notes is currently still unpublished publicly.

Let us begin with a concrete example first.

Example 1 (p-adic integers). Let p be a prime number. We have the sequence of rings

· · · → Z/p3Z→ Z/p2Z→ Z/pZ.

where ai+1 ∈ Z/pi+1Z 7→ ai ∈ Z/piZ is the modulo operation. If a sequence (an)n≥1 such that
an ∈ Z/pnZ satisfies the condition (for all i ∈ N∗, ai+1 7→ ai with the modulo operation), then the
sequence (an)n≥1 is said to be a p-adic integer, and we denote by Zp the set of all p-adic integers.

Example 2. When p = 5, we have the sequence

(2 mod 5, 17 mod 52, 67 mod 53, . . . )

as a p-adic integer. Note that it doesn’t need to correspond to any integer.

We generalize this concept of p-adic integers to define the inverse limit.

Definition (Inverse limit). Given sets and maps

· · · f2−→ X2
f1−→ X1

f0−→ X0.

Define

lim←−Xi :=

(xi) ∈
∏
i≥0

Xi : fi(xi+1) = xi for all i ≥ 0

 .

Example 3 (Roots of unity). This example is given by [22, III.7.3.] Suppose K̄ is an algebraically
closed field. Let

µℓn ⊆ K̄×

be the group of `n-th roots of unity. Raising to the `-th power gives the maps

µℓn+1
z 7→zℓ

−−−→ µℓn .

Hence, this fits into the definition of the inverse limit, i.e. let Xn be µℓn for all n ∈ N and let
fn : Xn+1 → Xn be defined as z 7→ zℓ. This defines lim←−n

Xn, which is a Tate module of K̄×.

Now let us consider a little generalization of the inverse limit.

Definition (Directed set). A directed set (I,�) is a set I equipped with a partial order � such
that every finite subset has an upper bound.

Definition (Inverse system). An inverse system indexed by a directed set (I,�) consists of a family
of sets (Xi)i∈I and a family of maps (fi,j : Xj → Xi)(i,j)∈�

1, satisfying

fi,i = idXi for all i ∈ I and fi,j ◦ fj,k = fi,k for all i, j, k ∈ I such that i � j � k.

Definition (Inverse limit (generalization)). For a given directed set (I,�) and an inverse system
(Xi)i∈I , (fi,j)i�j, its inverse limit is defined as

lim←−Xi :=

{
(xi) ∈

∏
i∈I

Xi : fi,j(xj) = xi for all j ∈ I such that i � j
}
.

Proposition 4. (from [19, 2.2]) Let Ω/K be a Galois extension. Then

Φ:

{
Gal(Ω/K) → lim←−Ω/L/K

Gal(L/K)

σ 7→ (σ|L)Ω/L/K

is a group isomorphism.
1The notation (i, j) ∈⪯ is same as i ⪯ j. We write it this way to make it clear that we consider every possible

pair (i, j) ∈ I × I satisfying i ⪯ j.
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Proof. Consider the family F of all field L such that Ω/L is Galois2 (i.e. L is a sub-Galois-
extension of Ω/K). This family forms a directed set because Ω is an upper bound for every L.
Then, consider the family (XL)L∈F defined by XL := Gal(L/K) with the corresponding family of
maps (fL,M )K̄/M/L/K defined by

fL,M :

{
Gal(M/K) → Gal(L/K)

σ 7→ σ|L

for all L,M such that Ω/M/L/K. This forms an inverse system, so lim←−XL is well-defined.
It is easy to check that the image by Φ lands on lim←−Gal(L/K) and that Φ is a group homo-

morphism. Now, consider the kernel

ker(Φ) = {σ ∈ Gal(Ω/K) : σ|L = idL for all Ω/L/K}.

Indeed, if σ is not idΩ, then some element got permuted, and that element must be in some
subextension L, so σ wouldn’t be in the kernel. Hence, ker(Φ) = {idΩ}. So Φ is injective. Now
we’re left with showing that it is surjective. Suppose (σ|L)Ω/L/K is in lim←−Gal(L/K) then we can
define a preimage σ by covering it with each L since Ω =

⋃
Ω/L/K L, i.e. σ(x) := σ|L(x) if x ∈ L.

To check that it is well-defined, we must check that if x ∈ L and x ∈ L′ then σ|L(x) = σ|L′(x).
This is true because M := L ∩L′ is lower in the poset such that L/M and L′/M are both Galois,
and by definition of lim←−Gal(L/K), σ|M (x) = σ|L(x) and σ|M (x) = σ|L′(x) so they must coincide.
This proves the surjectivity and hence completes the proof.

Definition (Profinite Group). A group G is profinite if it is an inverse limit of finite groups
(Gi)i∈I . Usually, we endow each finite group Gi with the discrete topology, and then promote G to
a topological group. The topology on G is given by the subset topology of the product topology on∏

n∈I Gi.

Proposition 5. Every profinite group is compact and Hausdorff.

Proof. Each Gi is finite with the discrete topology, hence compact and Hausdorff. Apply [5, 5.11.].3
(Tychonoff’s theorem together with another theorem which says the product of Hausdorff spaces
is Hausdorff)

Example 6. Let K be a perfect field, and K̄ be its algebraic closure. Then Gal(K̄/K) is a compact
group.

Proof. Apply 4 to see that Gal(K̄/K) ∼= lim←−Gal(L/K) which is profinite hence compact.

Example 7 (Gal(F̄p/Fp) ∼= Ẑ). We define Ẑ, the set of profinite integers, as

lim←−
n

Z/nZ

using the divisibility poset as its directed set, and the natural modulo as maps in the inverse system.
Now, apply 4 and the fact that Gal(Fpm/Fpn) ∼= Z/m

n Z for any integers n dividing m [9, 5.4.5(i)]
to see that

Gal(F̄p/Fp) ∼= lim←−
n

Gal(Fpn/Fp) ∼= lim←−
n

Z/nZ ∼= Ẑ.

We will prove the proposition using the following the following lemma. In this section, we
utilize the following notation. For any prime power q = pn (p being prime, n ≥ 1 being an
integer), Frobq denotes the map x 7→ xq defined on F̄q, so that Frobq ∈ Gal(F̄q/Fq), and Frobk

q

denotes Frobq ◦ · · · ◦ Frobq︸ ︷︷ ︸
k times

.

Lemma 8 (rearranged and summarized from [9]). Let p be a prime number and n ≥ 2 be an
integer. The group Gal(Fpin/Fpn) is generated by the map Frobq|Fpin

, so it is a cyclic group of
order i.

2L/K is automatically Galois.
3The terminology “compact” from [5] actually means “compact and Hausdorff” in the usual sense. And the

“compact” in the usual sense is called “quasi-compact” in [5].
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Proof. Let Φ := Frobq|Fpin
∈ Gal(Fpin/Fpn). The map Φi then denotes the map x 7→ xq

i

= xp
in

=

x. So Φi is 1Gal(Fpin/Fpn ). Now let us check whether there exists another integer 2 ≤ j < i such
that Φj = 1Gal(Fpin/Fpn ). Well Φj is the map x 7→ xp

jn . This cannot be identical to the identity
map because otherwise the polynomial xpjn − x = 0 would kill all x ∈ Fpin , i.e., the polynomial
would contain pin roots, but the degree of the polynomial is just pjn < pin, a contradiction. So
Φj 6= 1Gal(Fpin/Fpn ) for all 2 ≤ j < i, hence the order of Φ is i. This proves that i divides the
order of the Galois group. But #Gal(Fpin/Fpn) = [Fpin : Fpn ] = i. The equality is true since the
extension is normal and separable. Hence, {1,Φ,Φ2, . . . ,Φi−1} = Gal(Fpin/Fpn) and so Φ is a
generating element of the cyclic group Gal(Fpin/Fpn) of order i.

Now let us get to the main proposition.

Proposition 9. Let G be Gal(F̄q/Fq) where q = pn with p prime. Then G is a profinite group as
G = lim←−m

Gal(Fpmn/Fpn). Let S = 〈Frobq〉 be the subgroup generated by Frobq : x 7→ xq. Then
the topological closure of S is G.

Proof. It is enough to show that every nonempty open subset of G intersects S. Because if this
is the case, then every neighborhood of a point in G contains an open set, which, by this fact,
intersects S, and so G would be a subset of the topological closure of S, by definition.

Now let T be an open subset of G, then it can be written as an intersection between the inverse
limit and a union of sets in the basis of the product topology. Recall that the following collection
is a basis of the product topology [5, 3.11(i)]:{

(xi)i∈N∗ ∈
∏

m∈N∗

Gal(Fpmn/Fpn) : ∀j ∈ J, xj ∈ Uj

}
=
⋂
j∈J

pr−1
j (Uj),

where J ⊆ N∗ is finite and Uj is an open set (which is any set since the topology here is discrete)
of Gal(Fpjn/Fpn) for any j ∈ J . In our case, it is much simpler since all of Gal(Fpjn/Fpn) are
equipped with the discrete topology. We observe that

⋂
j∈J pr−1

j (Uj) is basically

∏
i∈N∗

{
Gal(Fpin/Fpn) ; if i /∈ J
Uj ; if i ∈ J.

(?)

In particular, since we picked T to be an open subset of G, and since T is an intersection between
the inverse limit and a union of basis, say T = G ∩ (

⋃
k Bk), there exists a set inside the basis (in

the form (?)), say Bk. Fix that set (let us rename it to B) and let J ⊆ N∗ be the corresponding
finite set and (Uj)j∈J be the corresponding family of finite sets where Uj ⊆ Gal(Fpjn/Fpn). If J is
not in the form [1, k] ∩ Z then we can make it into that form by selecting k to be max(J) and for
all j′ ∈ ([1, k]∩Z) \ J , set Uj′ := Gal(Fpj′n/Fpn). This allows us to assume J = [1, k]∩Z for some
k ∈ N∗.

Now, we have to show that G ∩ B ∩ S = B ∩ S 6= ∅. Well, if we can find an element σ ∈
Gal(Fpk!n/Fpn) such that the reduction of σ by the inverse system into Gal(Fpin/Fn) gives a
sequence which lies in B. Since the set J is finite, surely this is the case, i.e., there exists such
σ ∈ Gal(Fpk!n/Fpn). Furthermore, we can naturally lift this map into G. By the previous lemma,
the group Gal(Fpk!n/Fpn) is generated by Frobq|F

pk!n
, so σ = Frobq|ℓF

pk!n
for some ` ∈ N. Lifting

σ to Φ = Frobℓ
q, one sees that Φ ∈ B ∩ S, hence completes the proof.

Now we supply a few lemmas to prove another important tool.

Proposition 10. Suppose K̄/K is a Galois extension and K̄/L/K is an algebraic extension. The
map

ρK̄/L :

{
Gal(K̄/K) → Gal(L/K)

σ 7→ σ|L

is a surjective group homomorphism. In other words, any K-homomorphism from L to K̄ can be
extended to a homomorphism from K̄ to K̄.

Proof. (Edited from [7]) It is obvious that this map is a group homomorphism. Now let us show
that for any σ ∈ Gal(L/K), one can find σ̃ ∈ Gal(K̄/K) such that σ̃|L = σ. We do this by
adjoining roots one by one from L into K̄. Suppose α ∈ K̄ \ L, then one can extend σ into
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Gal(L(α)/K) by observing that L(α) ∼= L[T ]/(µα) where µα is the minimal polynomial of α over
L[T ]. Now we define the function σ′ : L[T ]→ K̄ as∑

aiT
i 7→ σ(ai)α

i.

Since σ′(µα) = µσ
α(α) = µα(α) = 0, this induces σ̃ : L[T ]/(µα) → K̄ as (µα) + P 7→ σ′(P ).

Composing σ̃ with the isomorphism L(α) ∼= L[T ]/(µα) gives a map σ̃ : L(α) → K̄ which can
easily be checked that it is a K-homomorphism from L(α) to K̄. This gives an extension of σ
from HomK(L, K̄) to HomK(L(α), K̄). Next, we consider the partially ordered set F consisting
of pairs of the form (M,ψ) where M is an intermediary field extension between L and K̄, and
ψ ∈ HomK(M, K̄) is such that ψ|L = σ, ordered by

(M1, ψ1) � (M2, ψ2)⇔M1 ⊆M2 and ψ2|M1
= ψ1.

Each chain CI = {(Mi, ψi)}i∈I has an upper bound. This is because we can define M :=
⋃

i∈I Mi ⊆
K̄, and define ψ ∈ HomK(M, K̄) by x 7→ ψi(x) whenever x ∈ Mi. This is well-defined because
by the chain property of CI , (Mi, ψi) � (Mj , ψj) or (Mj , ψj) � (Mi, ψi) for all i, j ∈ I, so there
cannot be two conflicting (i, j) ∈ I × I with x ∈ Mi, x ∈ Mj but ψi(x) 6= ψj(x). The pair (M,ψ)
is a valid element of F , and is an upper bound for the chain CI . By Zorn’s lemma, we deduce
that there exists a maximal element of F . Pick one such maximal element (Mmax, ψmax) of F .
If Mmax 6= K̄ then there exists α ∈ K̄ \Mmax, and by the first part of this proof, one can extend
ψmax from HomK(Mmax, K̄) to ψ̃max ∈ HomK(Mmax(α), K̄). Then (Mmax(α), ψ̃max) is a greater
element than (Mmax, ψmax), contradicting the fact that it is maximal. Therefore, Mmax = K̄ and
ψmax ∈ HomK(K̄, K̄) = Gal(K̄/K) is an extension of σ ∈ Gal(L/K), so that ρK̄/L(ψmax) = σ.
This proves that ρK̄/L is surjective.

Corollary 11. If K̄/K is a Galois extension, K̄/L is a Galois extension, and L/K is a finite
extension, then [L : K] = [Gal(K̄/K) : Gal(K̄/L)].

Proof. By the previous proposition, we apply the first homomorphism theorem of groups to ρK̄/L

to see that

Gal(K̄/K)/Gal(K̄/L) = Gal(K̄/K)/ ker(ρK̄/L)
∼= im(ρK̄/L) = Gal(L/K).

Since [L : K] is finite, we see that [Gal(K̄/K) : Gal(K̄/L)] is finite too, and is equal to [L : K] (see
the cardinality of the equation above).

Lemma 12. A profinite group G is a topological group, i.e., for the usual profinite group topology
on G, the maps ϕ : G×G→ G (multiplication on G) and ι : G→ G (inverse on G) are continuous.

Proof. Recall that if G = lim←−i∈I
Gi is a profinite group, then a basis of G is given by the collection

of sets of the form ⋂
j∈J

pr−1
j (Uj),

where J ⊆ I is finite and Uj ⊆ Gj is an open set (which is any set since Gi’s are discrete). It is
enough to show that the preimage of each of the member in this collection, through ϕ : G×G→ G
gives an open set, and the preimage through ι : G→ G gives also an open set. Fix a finite subset
J ⊆ I with Uj ⊆ Gj for each j ∈ J . Then let V :=

(⋂
j∈J pr−1

j (Uj)
)
∩G. We have

ϕ−1(V ) = ϕ−1

⋂
j∈J

prj |−1
G (Uj)

 =
⋂
j∈J

ϕ−1(prj |−1
G (Uj)).

Now recall that for a fixed j ∈ J ,

prj |−1
G (Uj) = G ∩

∏
i∈I

{
Gi ; if i 6= j

Ui ; if i = j
.
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Recall that ϕ : G×G→ G is actually the restriction of applying ϕi : Gi×Gi → Gi (the group law
of Gi) pointwise in the product

∏
i∈I Gi onto G×G, so

ϕ−1(prj |−1
G (Uj)) = ϕ−1(G) ∩

∏
i∈I

{
ϕ−1
i (Gi) ; if i 6= j

ϕ−1
i (Ui) ; if i = j

= (G×G) ∩
∏
i∈I

{
Gi ×Gi ; if i 6= j

ϕ−1
i (Ui) ; if i = j

= (G×G) ∩ pr′j
−1

(ϕ−1
i (Uj))

where pr′j is the projection
∏

i∈I Gi × Gi → Gj × Gj . Since ϕ−1
i (Uj) ⊆ Gj × Gj is finite, it

is open and so its preimage under the projection is also open. Since G × G is open, we have
ϕ−1(prj |G−1(Uj)) is open. Since J is finite, ϕ−1(V ) is a finite intersection of open sets, hence
open. This proves that the preimage of any member of the usual basis is open in G × G, so
ϕ : G×G→ G is continuous.

Now, let us show that ι : G → G is also continuous. Using the same strategy, let V :=(⋂
j∈J pr−1

j (Uj)
)
∩G with J ⊆ I finite and Uj ⊆ Gj for each j ∈ J . We have

ι−1(V ) =
⋂
j∈J

ι−1(prj |−1
G (Uj)),

but as before, we also have

ι−1(prj |−1
G (Uj)) = G ∩ pr−1

j (ι−1(Uj))

which is clearly open by the same argument as before, so ι is continuous.

Lemma 13. Let G be a profinite group and let g ∈ G. If H ≤ G is open, then gH is open. If
H ≤ G is closed, then gH is closed.

Proof. Since a profinite group is a topological group, we see that the group laws ϕ : G × G → G
and ι : G→ G are continuous.

(Taken from [2, Section 4.3]) For any x ∈ G, the map Lx : G → G defined by y 7→ xy is
continuous because it is a composition of continuous functions

G→ G×G φ−→ G

y 7→ (x, y) 7→ xy.

Moreover, Lx is bijective since G is a group, we see that L−1
x = Lx−1 and so L−1

x is continuous,
hence Lx is a homeomorphism from G to itself.

This means for any g ∈ G, if H ≤ G is open, then gH = Lg(H) is also open since Lg is a
homeomorphism. Same for the case that H ≤ G is closed.

Lemma 14. Let G be a profinite group. If H ≤ G is closed and has finite index in G, then H is
open.

Proof. If H ≤ G is closed, then the cosets gH are closed for all g ∈ G, by the previous lemma.
The complement G \H is a disjoint union of those cosets except H, so if [G : H] is finite then the
union is a finite union of closed sets, hence closed.

Lemma 15. Suppose K̄/K is a Galois extension. If L/K is a finite extension such that K̄/L is
a Galois extension, then Gal(K̄/L) is an open subgroup of the profinite group Gal(K̄/K).

Proof. First, let us show that Gal(K̄/L) is a closed subgroup of Gal(K̄/K). To do this, it is quite
easy because once we list the family {Gi}i∈I as {Gal(Ki/K)}i∈I in the infinite product for the
profinite group Gal(K̄/K), we see that

Gal(K̄/L) =
{
(σi)i∈I ∈ Gal(K̄/K) : σi|L = idL, ∀i ∈ I

}
=
{
(σi)i∈I ∈ Gal(K̄/K) : σi ∈ Gal(Ki/L)∀i ∈ I

}
= Gal(K̄/K) ∩

∏
i∈I

Gal(Ki/L),
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which is an intersection of closed sets (the product is an infinite product of closed sets, hence
closed), so Gal(K̄/L) is closed.

Next, let us show that if we furthermore assume that L/K is finite, then Gal(K̄/L) is open.
Apply 11 to see that [L : K] = [Gal(K̄/K) : Gal(K̄/L)], so the index of Gal(K̄/L) is finite in
Gal(K̄/K). Now apply 14 to see that Gal(K̄/L) is open.

Proposition 16. Let G be Gal(F̄q/Fq) where q = pn with p prime and n ∈ N∗. Let x be an
element of F̄q, then the map

Φx :

{
Gal(F̄q/Fq) → F̄q

σ 7→ σ(x)

is continuous.

Proof. It is enough to show that for all y ∈ F̄q, Φ−1
x ({y}) is open. If this is the case then the

preimage of an open set is the union of preimages of each element of that set, which is a union of
open set, hence open. This would prove the continuity of Φx. Now if Φ−1

x ({y}) is empty, then it
is open. Suppose Φ−1

x ({y}) 6= ∅. Take σ0 ∈ Φ−1
x ({y}) to be an arbitrary element. Then

Φ−1
x ({y}) = {σ ∈ Gal(K̄/K) : σ(x) = σ0(x)}

= {σ ∈ Gal(K̄/K) : (σ−1 ◦ σ0)(x) = x}
= {σ ∈ Gal(K̄/K) : (σ−1 ◦ σ0) ∈ Gal(K̄/K(x))}
= σ0Gal(K̄/K(x)).

Apply 15 to see that Gal(K̄/K(x)) is open. Now apply 13 to see that σ0Gal(K̄/K(x)) is also open.
This proves the continuity of Φx.

1.2.2 Isogenies and Separability
This section aims to recall the notion of isogeny and separability, and to prove some basic results
about separability. The main reference of this section is [22, II.2, II.4, III.4, III.5].

Morphisms and Separability
We take for granted the following results from [22, II.2].

Proposition 17. Let C ⊆ Pn be a curve and let V ⊆ Pn be a variety. If C is smooth, then any
rational map φ : C → V is a morphism.

Proof. See [22, II.2.1].

Theorem 18. A morphism between curves is either constant or surjective.

Proof. See [22, II.2.3].

Now, let C/K be a smooth curve and let FK(C,P1) denote the set of rational maps from C
to P1 defined over K, then the map

Φ:


K(C) ∪ {∞} → FK(C,P1)

f 7→ [f, 1]

∞ 7→ [1, 0]

is a bijection, where Φ(f) can be given explicitly as

P 7→

{
[f(P ), 1] if f is regular at P
[1, 0] otherwise

for every f ∈ K(C). This allows us to define the induced injection of function fields as follows.

Definition (Induced injection of function fields). Let C1/K and C2/K be curves and let φ : C1 →
C2 be a nonconstant rational map defined over K. We write φ∗ for the induced injection of function
fields, defined by

φ∗ :

{
K(C2) → K(C1)

f 7→ Φ−1(Φ(f) ◦ φ).
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Definition (Separability of a map). Let C1/K and C2/K be curves and let φ : C1 → C2 be a
nonconstant rational map defined over K. We say that φ is separable, inseparable, or purely
inseparable depending on the corresponding separability of the field extension K(C1)/φ

∗K(C2).
Also, we define the degree degφ to be the index [K(C1) : φ

∗K(C2)] of the field extension.

Proposition 19 ([22, II.2.6b]). Let φ : C1 → C2 be a nonconstant map of smooth curves. Then
for all but finitely many Q ∈ C2, #φ−1(Q) = degs(φ).

Proof. See [22, II.2.6b].

Differentials
Definition (Differential forms). Let C be a curve. For every f ∈ K̄(C), we attach a symbol d to
construct df . This gives the set

{df : f ∈ K̄(C)}.
Now, we quotient out this set by the following rules of equivalence:

(i) d(x+ y) ∼ dx+ dy for all x, y ∈ K̄(C).

(ii) d(xy) ∼ xdy + ydx for all x, y ∈ K̄(C).

(iii) da ∼ 0 for all a ∈ K̄.

The remaining quotient set is called the space of (meromorphic) differential forms, and is denoted
by ΩC . It is a K̄(C)-vector space.

We define Derk(K,E) as the space of functions D : K → E satisfying

• For all f, g ∈ K, D(f + g) = D(f) +D(g).

• For all f, g ∈ K, D(fg) = fD(g) + gD(f).

• For all a ∈ k, D(a) = 0E .

Proposition 20 (edited from [4]). HomK(ΩK , E) ∼= Derk(K,E)

Proof. Define φ : Derk(K,E) → HomK(ΩK , E) as φ(D) = df 7→ D(f) for any D ∈ Derk(K,E).
It remains to check that φ(D) is a vector space homomorphism, i.e. linear over k. This is true
because φ(D)(d(f + g)) = D(f + g) = D(f) + D(g) = φ(D)(df) + φ(D)(dg) and φ(D)(λdf) =
φ(D)(d(λf)) = D(λf) = λD(f) = λφ(D)(df), hence linear.

Lemma 21 (edited from [18, II.3.4]). If K ′ is a finite separable extension of K, and K is a finite
extension of k, then the restriction Derk(K ′, E)→ Derk(K,E) is bijective.

Proof. By the primitive element theorem, K ′ = K(α) for some α ∈ K ′ and there exists a separable
minimal polynomial P ∈ K[x] such that P (α) = 0. We write P (x) =

∑n
i=0 aix

i and see that
P (α) = 0 gives D(P (α)) = 0 for any D ∈ Derk(K ′, E). This means that if D̄ is an extension of D
from K to K ′, then

D̄(P (α)) = D̄

(
n∑

i=0

aiα
i

)

=

n∑
i=0

D̄(aiα
i)

=

n∑
i=1

(aiD̄(αi) + αiD̄(ai)) + D̄(a0).

But D̄(xi) = xD̄(xi−1) + xi−1D̄(x) for all i ∈ N≥2, so by simple induction we have D̄(xi) =
ixi−1D̄(x) for all i ∈ N≥1 and for all x ∈ K ′. This gives

D̄(P (α)) =

n∑
i=1

(
aiiα

i−1D̄(α) + αiD̄(ai)
)
+D(a0) = 0.

Since P is separable, P ′ 6= 0, so
∑n

i=1 aiix
i−1 6= 0. Hence, we have

D̄(α) =
−
∑n

i=0 α
iD̄(ai)∑n

i=1 aiiα
i−1

.
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But ai ∈ K for all i so D̄(ai) is actually D(ai). Hence,

D̄(α) =
−
∑n

i=0 α
iD(ai)∑n

i=1 aiiα
i−1

.

Now D̄, exists uniquely at α. This actually extends to all of K ′ since each element x of K ′ can be
written as

[K′:K]−1∑
i=0

λiα
i

where λi ∈ K for all i. This defines D̄(x) as

[K′:K]−1∑
i=1

λiiα
i−1D̄(α) +

[K′:K]−1∑
i=0

αiD(λi).

(as usual) which is uniquely defined depending on the value of D̄(α). This completes the proof.

Proposition 22 (from [22, II.4.2a]). Let C be a curve. Then ΩC is a 1-dimensional K̄(C)-vector
space.

Proof. Let P be a nonsingular point on C and pick any uniformizer t of P in K̄(C). Observe that
K̄(C) is a finite separable extension of K̄(t) ([22], II.1.4; the argument still holds when we replace
K by K̄ in the proof), so DerK̄(K̄(C), E)↔ DerK̄(K̄(t), E) by the previous lemma. Now, consider
the map φ : DerK̄(K̄(t), E) → E defined by φ(D) = D(t) for all D. This is injective because if
D1(t) = D2(t) then for all y ∈ K̄(t), y can be written as a rational function of polynomials over
t (with coefficients and constants in K̄), which, by the derivative rule, D(y) can be defined in
terms of D(t) and so this gives D1(y) = D2(y) for all y ∈ K̄(t) hence D1 = D2. Now clearly it is
surjective since one can define D(t) = λ for any λ ∈ E. Hence,

DerK̄(K̄(C), E)↔ DerK̄(K̄(t), E)↔ E

and observe that the bijection from DerK̄(K̄(C), E) to E is linear, so dimK̄ DerK̄(K̄(C), E) =
dimE = 1. But HomK̄(C)(ΩC , E) ∼= DerK̄(K̄(C), E) so it has dimension one also. Now suppose
E = K̄(C) and so this means dimK̄(C) ΩC = 1. (Recall the basic fact that if V is a finite dimensional
A-vector space, then HomA(V,A) ∼= V .)

Proposition 23 (from [22, II.4.2b]). Let C be a curve. Let x ∈ K̄(C). Then dx is a K̄(C)-basis
for ΩC if and only if K̄(C)/K̄(x) is a finite separable extension.

Proof. (⇒) Suppose dx is a basis, then for all df ∈ ΩC , df = λdx where λ ∈ K̄(C). As seen
previously, K̄(C)/K̄(t) is a finite separable extension, so it suffices to show that K̄(t)/K̄(x) is a
finite separable extension. Since K̄(C)/K̄(t)/K̄(x)/K̄, K̄(C) is finitely generated over K̄, and has
transcendental degree one, K̄(t)/K̄(x) is a finite algebraic extension. We’re left with showing that
it is separable.

By contradiction suppose it is not separable, then there exists an element a ∈ K̄(t) with minimal
polynomial f ∈ K̄(x)[y] such that f(a) = 0 and ∂yf(a) = 0. For the sake of clarity, let us denote
L := K̄(x) so that we can write f ∈ L[y] peacefully. Suppose f(y) =

∑n
i=0 liy

i, where li ∈ L and
ln = 1 (monic).

Consider a ∈ L ⊆ K̄(C) so d(a) = λdx for some λ ∈ K̄(C). And for each i ∈ {0 . . . n} we have
li ∈ L so there exists µi ∈ K̄(C) such that d(li) = µidx. Then,

0 = f(a) =

n∑
i=0

lia
i

implies

an = −
n−1∑
i=0

lia
i
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so

d(an) = d
(
−

n−1∑
i=0

lia
i

)

nan−1d(a) = −
n−1∑
i=0

d(liai)

= −
n−1∑
i=0

(lid(ai) + aid(li))

= −

d(a)
n−1∑
i=1

liia
i−1

︸ ︷︷ ︸
0 because ∂yf(a)=0

+

n−1∑
i=0

d(li)ai


= −

n−1∑
i=0

d(li)ai.

Now, by our hypothesis, suppose d(a) = µdx and suppose d(li) = λidx, where µ, λ0, . . . , λn−1 ∈
K̄(C), so that we arrive with (

nan−1µ+

n−1∑
i=0

λia
i

)
dx = 0.

Since dx 6= 0, we have

nan−1µ+

n−1∑
i=0

λia
i = 0. (?)

Now, consider the claim that for any f ∈ K̄(x), if df = λdx then λ ∈ K̄(x). We can see this
by considering P ∈ K̄[x] first, where P =

∑r
i=0 bix

i where b0, . . . , br ∈ K̄. We have

d(P ) =
r∑

i=0

(bid(xi) + d(bi)xi) =
r∑

i=1

biix
i−1dx+

r∑
i=0

d(bi)︸ ︷︷ ︸
0

xi = dx
r∑

i=1

biix
i−1.

Suppose d(P ) = λdx then since dx 6= 0, λ =
∑r

i=1 biix
i−1 ∈ K̄(x). This proves that λ ∈ K̄(x)

for any P ∈ K̄[x]. Now, if P ∈ K̄(x), 0 = d(1) = d(P 1
P ) = Pd

(
1
P

)
+ 1

P d(P ) so d
(
1
P

)
=

− 1
P 2 d(P ) ∈ K̄(x). Now it is easy to see that for any fraction P

Q ∈ K̄(x) where P,Q ∈ K̄[x],
d
(

P
Q

)
= Pd

(
1
Q

)
+ 1

Qd
(
1
P

)
∈ K̄(x). This proves the claim.

Going back to our equation (?), we now know that µ, λ0, . . . , λn−1 ∈ K̄(x) = L, so we obtain
a polynomial with degree n − 1 that vanishes at a. This contradicts the assumption that the
minimum polynomial f is of degree n, and hence proves that K̄(t)/K̄(x) is separable, therefore
K̄(C)/K̄(x) is a finite separable extension.

(⇐) Suppose K̄(C)/K̄(x) is a finite separable extension. Then, by the primitive element
theorem, we may write K̄(C) = K̄(x, α) for some α ∈ K̄(C), and that the minimal polynomial for
α in L[y] (where L = K̄(x)) exists and is separable. So one can write

∑n
i=0 liα

i = 0, and this gives
n∑

i=1

liiα
i−1

︸ ︷︷ ︸
6=0 due to separability

d(α) +
n∑

i=0

d(li)︸︷︷︸
can be written as a multiple of dx

αi = 0

so d(α) can also be written as a multiple of dx. Now, for each f ∈ K̄(C), we can write f as an
algebraic combination of objects in K̄[x, α], so df is an algebraic combination of objects in the form
λdx for some λ ∈ K̄(C), hence the sum is also in the form λ′dx for maybe some other λ′ ∈ K̄(C).
This means every element in ΩC can be written as a K̄(C)-multiple of dx, hence dx is a basis of
ΩC . This completes the proof.

Now, if φ : C1 → C2 is a nonconstant map of curves, then φ∗ : K̄(C2)→ K̄(C1) induces another
map which is also denoted by φ∗, defined by{

ΩC2
→ ΩC1∑

fidxi 7→
∑

(φ∗fi)d(φ∗xi).
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Proposition 24 (from [22, II.4.2c]). Let φ : C1 → C2 be a nonconstant map of curves. Then φ is
separable if and only if the map φ∗ : ΩC2 → ΩC1 is injective (equivalently, nonzero).

Proof. See [22, II.4.2c].

On Elliptic Curves
Let us now go back into the context of elliptic curves.

Definition (Isogeny). Let E1 and E2 be elliptic curves. A morphism φ : E1 → E2 is said to be an
isogeny if φ(O) = O. The set of isogenies from E1 to E2 is denoted by Hom(E1, E2).

Remark. Nonzero isogenies are nonconstant isogenies since if φ is zero then it is also constant
in particular, and if it is constant, by definition that φ(O) = O, it must therefore be zero.

Theorem 25. Let φ : E1 → E2 be a nonzero isogeny. If φ is separable then # kerφ = degφ.

Proof. This proof follows the proof of [22, III.4.10a]. First, let us show that #φ−1(Q) are equal
for all Q ∈ E2. Well pick any Q,Q′ ∈ E2 and let R be a point in φ−1(Q′−Q) (which is nonempty
since φ is surjective because it is nonconstant and due to 18). Now the map{

φ−1(Q) → φ−1(Q′)

P 7→ P +R

is clearly injective. Now if P ′ ∈ φ−1(Q′) then P ′−R ∈ φ−1(Q) because φ(P ′−R) = φ(P ′)−φ(R) =
Q′−(Q′−Q) = Q. So for each P ′ ∈ φ−1(Q′), P ′−R is a preimage, hence the map is surjective. This
gives a bijection between φ−1(Q) and φ−1(Q′) for all Q,Q′ ∈ E2 and so #φ−1(Q) are all equal. By
19, all (except finite number of points) Q ∈ E2 satisfies #φ−1(Q) = degs(φ) so at least one satisfies
this in particular. This means #φ−1(Q) = degs(φ) is actually true for all Q ∈ E2, and since φ is
separable, degs(φ) = deg(φ). This proves that # kerφ = #φ−1(O) = degs(φ) = deg(φ).

We now define something called the invariant differential.

Definition. Let E/K be an elliptic curve given by the usual Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We define the invariant differential

ω :=
dx

2y + a1x+ a3
∈ ΩE .

When E is clear from context, we just write ω to denote the invariant differential for E.

Theorem 26 ([22, III.5.2]). Let E,E′ be elliptic curves, let ω be the invariant differential on E,
and let φ, ψ : E → E′ be isogenies. Then

(φ+ ψ)∗ω = φ∗ω + ψ∗ω.

Proof. See [22, III.5.2].

Theorem 27 (special case of [22, III.5.5]). Let E/Fq be an elliptic curve over a finite field Fq

of characteristic p. Let φ : E → E be the Frobenius morphism sending (x, y) to (xq, yq). Then
(1− φ) : E → E is a separable map.

Remark. The elliptic curve E/Fq can be written as

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with a1, a2, a3, a4, a6 ∈ Fq. Then the Frobenius morphism φ : E → E(q) is actually defined from E
to E(q) where

E(q) : Frobq(y)
2+a1Frobq(x)Frobq(y)+a3Frobq(y) = Frobq(x)

3+a2Frobq(x)
2+a4Frobq(x)+a6.

But a1, a2, a3, a4, a6 ∈ Fq so it is fixed by Frobq, i.e., the equation E(q) is equivalent to

Frobq(y
2 + a1xy + a3y) = Frobq(x

3 + a2x
2 + a4x+ a6).

Since Frobq is injective, we conclude that E(q) = E, and so φ is well-defined as an endomorphism
from E to itself and so we can actually write φ : E → E.

We delay the proof of 27 because we will need some results on the Frobenius map first.
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1.2.3 The Frobenius Map on Curves
Generalizing the remark after the theorem 27, we discuss some basic results of the Frobenius map
on curves here. If K is a field with characteristic p 6= 0. Let q = pr for some r ∈ N∗. For
any polynomial f ∈ K[X0, . . . , Xn], we denote by f (q) the polynomial obtained by raising all
coefficients to the power of q. Then, for any curve C/K, the projective variety generated by the
ideal generated by the set

{f (q) : f ∈ I(C)}

is a curve, denoted by C(q)/K. We define the Frobenius map on curves as a morphism given by

φ :

{
C → C(q)

[x0, . . . , xn] 7→ [xq0, . . . , x
q
n]
.

We state a useful result from [22, II.2.11] as follows.

Proposition 28. Let K be a field of characteristic p > 0, let q = pr for some r ∈ N∗, let C/K be
a curve, and let φ : C → C(q) be the Frobenius morphism. Then φ is inseparable and degφ = q.

Proof. See [22, II.2.11].

Proof of Theorem 27. Note that we follow [22, III.5.5] but simplify for only this special case. Recall
24 and let us prove that the map (1− φ)∗ : ΩE → ΩE is nonzero. By 26,

(1− φ)∗(ω) = ω − φ∗(ω).

Since φ is inseparable by 28, φ∗(ω) = 0, so (1− φ)∗(ω) = ω, i.e. (1− φ)∗ is not the zero map.

1.2.4 The Dual Isogeny
Later on, we rely on the existence of a dual for each isogeny to prove some useful results. Consider
the following theorem.

Theorem 29 (Dual isogeny). Let E1 and E2 be elliptic curves with an isogeny φ : E1 → E2. Then
there exists a unique isogeny φ̂ : E2 → E1 satisfying φ̂◦φ = [degφ]. We call this φ̂ the dual isogeny
of φ and later on we use the symbolˆ to denote the dual of any isogeny.

Proof. See [22, III.6.1a]. An explicit construction is given by [22, III.6.1b].

Theorem 30. For all m ∈ Z, on any elliptic curve, deg[m] = m2.

Proof. See [22, III.6.2].

1.2.5 A form of The Cauchy–Schwarz Inequality
In this context, we use the generalized notion of a “positive definite quadratic form” using the
following definition.

Definition. Let A be an abelian group. A map d : A→ Z is said to be a quadratic form if

(i) d(α) = d(−α) for all α ∈ A;

(ii) The pairing

(·, ·) :

{
A×A → R
(α, β) 7→ d(α+ β)− d(α)− d(β)

is bilinear.

Furthermore, it is said to be positive definite if it satisfies:

(iii) d(α) ≥ 0 for all α ∈ A;

(iv) d(α) = 0 if and only if α = 0.

Theorem 31. Let E1 and E2 be elliptic curves. The degree map

deg : Hom(E1, E2)→ Z

is a positive definite quadratic form.
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Proof. See [22, III.6.3].

Lemma 32 (a form of Cauchy–Schwarz, [22, V.1.2]). Let A be an abelian group and let d : A→ Z
be a positive definite quadratic form. Then |d(ψ−φ)−d(ψ)−d(φ)| ≤ 2

√
d(φ)d(ψ) for all ψ, φ ∈ A.

Proof. The following is edited from [22, V.1.2]. Let L be the bilinear pairing defined by{
A×A → R

(α, β) 7→ d(α− β)− d(α)− d(β)
.

Since d is positive definite, for all m,n ∈ Z, for all ψ, φ ∈ A, we have

0 ≤ d(mψ − nφ) = L(mψ,nφ) + d(mψ) + d(nφ) = mnL(ψ, φ) +m2d(ψ) + n2d(φ).

Now take m = −L(ψ, φ) and n = 2d(ψ) to see that

0 ≤ −2d(ψ)L(ψ, φ)2 + d(ψ)L(ψ, φ)2 + 4d(ψ)2d(φ) = d(ψ)(4d(ψ)d(φ)− L(ψ, φ)2).

Well if d(ψ) = 0 then ψ = 0 and |d(ψ − φ) − d(ψ) − d(φ)| = |d(−φ) − d(φ)| = 0 = 2
√
d(φ)d(ψ)

proves the inequality. Otherwise d(ψ) > 0 and so 0 ≤ 4d(ψ)d(φ) − L(ψ, φ)2. This proves the
inequality.

1.2.6 The Proof
We piece together the supporting claims to prove the following theorem.

Theorem 33 (Hasse’s bound). Let E/Fq be an elliptic curve defined over a finite field. Then

|#E(Fq)− q − 1| ≤ 2
√
q.

Proof. The following proof tries to simplify the one given in [22, V.1.1]. Choose a Weierstrass
equation for E with coefficients in Fq, and let φ : E → E be the Frobenius map (x, y) 7→ (xq, yq).
This is well-defined by the remark after Theorem 27. Now, recall the basic facts from Galois theory
[9] that for any point P = (xP , yP ) ∈ E(F̄q), P ∈ E(Fq) if and only if xP and yP are fixed by all
of Gal(F̄q/Fq). Now suppose x ∈ F̄q and let Φ be the continuous map (16 proves the continuity){

Gal(F̄q/Fq) → F̄q

σ 7→ σ(x)
.

If ψ ∈ Gal(F̄q/Fq) is a map that permutes x away from itself then ψ(x) 6= x, so ψ ∈ Φ−1(F̄q \{x}),
which is open by continuity of Φ. By 9, the set Φ−1(F̄q \{x}) hits φk for some k ∈ N∗. This means
φk(x) 6= x and so it is impossible that φ(x) = x. What we’ve shown so far is that if φ fixes x then
surely every one of Gal(F̄q/Fq) fixes x also. Conversely, if x ∈ Fq then obviously all of Gal(F̄q/Fq)
fix x. This allows us to see that

P ∈ E(Fq) if and only if φ(P ) = P if and only if (1− φ)(P ) = O.

So E(Fq) = ker(1− φ). The result from 27 tells us that (1− φ) is separable. Now apply 25 to see
that # ker(1 − φ) = deg(1 − φ). This proves that #E(Fq) = deg(1 − φ). Now we apply 31 to see
that deg is a positive definite quadratic form and then apply 32 to see that

| deg(1− φ)− deg([1])− deg(φ)| ≤ 2
√

deg([1]) deg(φ).

Using the fact that deg([1]) = 1 (trivial by definition) and deg(φ) = q (by 28), we conclude that

|#E(Fq)− q − 1| ≤ 2
√
q.

This completes the proof.

1.3 Integer Factorization
We continue to an important unsolved problem in computer science: Can integer factorization be
done in polynomial time? There is a very interesting line of research trying to improve and analyze
integer factorization algorithms. It is interesting in its own right, but we will not be focusing on
that here. Instead, we will give a short introduction and consider how elliptic curves may be used
to help with integer factorization.
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1.3.1 The RSA Cryptosystem
The RSA cryptosystem is one of the first asymmetric cryptosystem. We begin with the method
for the key generation.

1. Choose two prime numbers p and q. Let n = pq and m = (p− 1)(q − 1).

2. Choose an integer e such that 1 < e < m and gcd(e,m) = 1.

3. Compute d such that 1 < d < m and de ≡ 1 (mod m). (This requires proving that such d
exists and can be computed easily, which will be supplied next.)

Proof that d exists and can be computed easily. Since gcd(e,m) = 1, by Bézout’s identity, there
exists a solution (x, y) ∈ Z× Z to ex+my = 1. Such a solution can be taken so that 0 ≤ x < m.
Algorithmically, this can be done using the extended Euclidean algorithm on (e,m) in polynomial
time. Once we found such x, then we take d := x mod m so that 1 < d < m and de = 1−my′ for
some y′ ∈ Z means de ≡ 1 (mod m).

The public key is the pair (n, e), and the private key is d. Suppose Alice generates the key
and Bob wants to send some information to Alice, then first Alice publishes the pair (n, e). Now
suppose Bob wants to encrypt a message M , which is an integer such that 0 ≤M < n. Bob then
computes c :=Me mod n and sends c to Alice.

Now suppose Alice wants to decrypt the ciphertext c. Alice can compute cd mod n. Since
cd = (Me)d = Mde ≡ M (mod n), we see that cd mod n = M . This allows the Alice to recover
Bob’s message. Note that the congruence Mde ≡ M (mod n) requires a little bit of elementary
number theory: Since de ≡ 1 (mod m) suppose de − 1 = mk for some k ∈ Z. Then Mde =
M ·Mmk. But Mm =M (p−1)(q−1) ≡ 1 (mod n). This is due to Euler’s theorem and the fact that
ϕ(n) = ϕ(pq) = (p− 1)(q − 1). This completes the description of the cryptosystem.

The hard part is that if Eve, an eavesdropper, wants to recover Bob’s message knowing only
c, e, n, is it possible to deduce M? It turns out that it is actually possible, but practically time-
consuming, to recover M . This is called the RSA problem.

Problem (RSA Problem). Given c, e, n ∈ Z such that 0 ≤ c < n, 1 < e < m, gcd(e,m) = 1.
Suppose that there exists (unknown) primes p, q such that n = pq, and there exists (unknown)
integer message 0 ≤M < n such that Me mod n = c. The problem is to recover such M .

It is unknown to this day of writing this, whether there exists an algorithm to solve the RSA
problem in polynomial time or not. However, if integer factorization can be done in polynomial
time, then one can use such algorithm to factorize n into p and q very quickly. Knowing p and
q, one can easily compute m and d, and if Eve manages to do this, Eve can recover the message
using Alice’s decryption algorithm directly.

Remark. A common misleading oversimplification is the quote “RSA relies on the hardness of
integer factorization”. In fact, if one can solve integer factorization in polynomial time, then
the RSA problem can be solved in polynomial time. We actually don’t know about the other way
around, and it is reasonably suggested that the RSA problem might actually be easier than integer
factorization, since we only need to factor semiprimes (product of two primes).

In the next subsections, we will consider how to factorize integers more efficiently than brute-
forcing all the possible factors. Note that all of these algorithms are still called “inefficient” because
they are not done in polynomial time.

1.3.2 Pollard’s p− 1 algorithm
A very basic, obvious, and naive algorithm to factorize an integer N ∈ N is to loop over all integers
i = 1, 2, . . . , N and check if N mod i = 0. A slight improvement is to loop only over primes, and
loop only at most

√
N (since if d | N then N

d | N also). These improvements leave the algorithm to
be run in O(

√
N) (which is not bounded by any polynomial of log2N). In this section, we describe

Pollard’s p− 1 algorithm, which runs successfully with high probability, in O(L logL log2N) with
a conveniently chosen value of L.

Consider the following algorithm (see Algorithm 1).
Let us analyze the algorithm. If at some point of the inner for-loop, 1 < F < N , then by the

definition, since F = gcd(A − 1, N), F divides N and so it is a nontrivial factor of N . Suppose
we ignore the line A← Ai mod N and replace it with just A← Ai first. Now there are two other
cases ([6, Section 5.4]):
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Algorithm 1 Pollard’s p− 1 Algorithm
Require: N ≥ 2, L ∈ N∗

Ensure: F is a prime factor of N , or failure
a← a random integer between 2 and N − 1
F ← gcd(a,N)
if 1 < F < N then success: return F and halt
end if
A← a
for i = 1, . . . , L do

A← Ai mod N
F ← gcd(A− 1, N)
if 1 < F < N then success: return F and halt
else if F = N then failure: restart the algorithm by selecting a again
end if

end for
If no success has been returned yet, then failure.

1. F = N . This means gcd(A− 1, N) = N , i.e. N divides A− 1. But at this point A = ai!, so
N | ai! − 1. Even if we increment i, we see that a(i+1)! − 1 = (ai!)i+1 − 1, which is a multiple
of ai!− 1, which is already a multiple of N . This means there is no point in increasing i: the
later gcd(A− 1, N) will always be N and F = N will be a trivial factor of N .

2. F = 1. This means gcd(A−1, N) = 1. Recall that at this point A = ai!, so gcd(ai!−1, N) = 1.
And since ai!−1 is a factor of a(i+1)!−1, we hope that by incrementing i, extra factors would
appear, so we don’t stop at this point but rather increase i.

Now we see that even if we replace back that line with A ← Ai mod N , the arguments still work
in the same way.

Consider the integer N ∈ N∗ which is to be factorized. Suppose there is a prime p which is a
factor of N . Write

p− 1 =

t∏
i=1

qeii .

and let L := max1≤j≤t ejqj . We claim [22, XI.2.1] that the case F = 1 will eventually be gone.
This is captured in the following proposition.

Proposition 34. Let N ∈ N∗ be the input integer, which is divisible by a prime p where

p− 1 =

t∏
i=1

qeii .

Let
L := max

i≤j≤t
ejqj .

Then the algorithm 1 will not fail on the second case, i.e., in the end it is either the case of
1 < F < N (success) or F = N (failure), but never F = 1.

Proof. Consider at i = L, we have A = aL! mod N . It follows that by the definition of L, the
quantity qejj divides L! for each 1 ≤ j ≤ t, so p−1 | L!. By Fermat’s little theorem, ap−1 ≡ 1 mod p
so aL! ≡ 1 mod p also. This means p is a factor of aL!− 1. But by assumption, we knew that p is a
factor of N also, so gcd(aL! − 1, N) 6= 1 for sure, and gcd(aL! − 1, N) = gcd((aL! mod N)− 1, N),
so the case of F = 1 cannot happen at i = L.

Now, the only case of failure is when F = N . For most values of N , this is unlikely. Here
we attach an experimental evidence in figure 1.1 to show that this is not always true, but for a
random N , it looks fine.

In particular, for N = 2047 = 23 × 89, the probability of failure can be up to ≥ 0.78. In the
next section, we will discuss the ECM, which can be thought of a generalization of Pollard’s p− 1
algorithm but instead of using the group F×

p we use the groups given by elliptic curves instead.
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Figure 1.1: Probability of failure of Pollard’s p − 1 algorithm on composite numbers N (upon
randomizing a ∈ {2, . . . , N − 1})

Algorithm 2 Lenstra’s elliptic curve factorization
Require: N ≥ 2, L ∈ N∗

Ensure: F is a prime factor of N , or failure
E ← an elliptic curve over Z/NZ
P ← a point on E(Z/NZ)
Q← P
for i = 2, . . . , L do

Q← [i]Q
if during the computation of [i]Q, an inverse of a noninvertible element of a ∈ Z/NZ is

needed then
F ← gcd(a,N)
if 1 < F < N then success: return F and halt
else if F = N then failure: restart the algorithm by selecting E,P again
end if

end if
end for
If no success has been returned yet, then failure.
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1.3.3 Lenstra’s elliptic curve factorization algorithm (ECM)
Instead of working over F×

p , we work over E(Fp) instead. This is captured by the following
algorithm (Algorithm 2).

As before, we see that if there is a prime factor p of N such that #E(Fp) =
∏t

j=1 q
et
t so that

L ≥ max1≤j≤t qtet, then #E(Fp) | L!, so the computation of [L!]P can be factored as[
L!

#E(Fp)

]
([#E(Fp)]P ) =

[
L!

#E(Fp)

]
(O) = O.

This means, for such high enough L, there cannot be failure by succeeding in computing [L!]P ;
during the loop i = 2, . . . , L there must be at least once that [i]Q requires inverting a noninvertible
element of Z/NZ. So the only failure is when, upon seeing that noninvertible element a and letting
F = gcd(a,N), we have F = N . Such case is improbable as of figure 1.1, but in this Lenstra’s
method, when this happens we can completely change the initial curve E. Even if p | N is fixed,
we’re allowed to vary E so that there are multiple possibilities for #E(Fp). This gives a heuristic
time complexity of exp((

√
2+ o(1))

√
log p log log p) [13]. However, almost all of the arguments can

be made rigorous [6, Section 7.4.1, pg. 339] except the following, which is still a conjecture given
by [13, (2.9)].
Conjecture 1. For a real number x > e, define

L(x) = exp(
√

logx log logx).

Let α be a strictly positive real number, then the probability that a random integer s inside the
interval (x + 1 −

√
x, x + 1 +

√
x) has all its prime factors bounded from above by L(x)α is

L(x)−
1
2α+o(1), for x→ +∞.

Remark. For the implementation details, choosing a random elliptic curve followed by a point on
it is actually a bit complicated. We proceed with choosing an integer 0 ≤ A < N first and a point
P = (x0, y0) where 0 ≤ x0, y0 < N . Then let B = y20 − x30 − Ax0, so that E can be written as
y2 = x3 +Ax+B over Z/NZ.

Also note that Z/NZ is not necessarily a field, so the general theory of elliptic curves doesn’t
work, but we don’t need to worry too much. In fact, the computations of multiplication-by-m map
can be done using the same usual formula for elliptic curves, where we would handle division by a
noninvertible element in the computation.

Let us end with the remark that ECM is still currently not the best factorization algorithm, but
is very good in practice for factorizing smooth integers. There are other factorization algorithms
that would be better suited for the general case, such as the quadratic sieve (QS) and the general
number field sieve (GNFS). However, they are beyond the scope of this thesis.

1.4 The Discrete Logarithm Problem
1.4.1 The ElGamal Cryptosystem
We fix a group (G, ·) and let us consider the following description.

1. Alice and Bob agree on an element C ∈ G.

2. Alice select a ∈ N, which is the secret key, and computes A := Ca, which is the public key.

3. Bob wants to encrypt a message M ∈ G. Bob choose a random k ∈ N.

4. Bob computes
B1 = Ck and B2 =MAk.

5. Bob sends (B1, B2) through an insecure communication line.

6. Seeing that Ba
1 = (Ck)a = Cak = (Ca)k = Ak, one can compute M as M = MAk(Ak)−1 =

B2(B
a
1 )

−1. Alice can then compute B2(B
a
1 )

−1 to recover M .

Now we see that this is obviously correct. But if Eve wants to recover M knowing only
(C,A,B1, B2), then a must be recovered. This information can be deduced from knowing A and
C. One can check the sequence C,C2, . . . until Ce = A for some e. Now even if e may not be
equal to a, but A = Ce would imply that Be

1 = (Ck)e = (Ce)k = Ak and so B2(B
e
1)

−1 is still equal
to M . Hence, the problem of Eve is to find an integer e such that Ce = A. This gives the problem
in the next section.
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1.4.2 Discrete Logarithm Problem (DLP) and ECDLP
Consider the discrete logarithm problem, which is related to Eve’s problem in the previous de-
scription of the ElGamal cryptosystem.

Problem (Discrete logarithm problem (DLP)). Given a group G and two elements x, y ∈ G such
that y ∈ 〈x〉, then there exists m ∈ N such that y = xm. The problem is to recover such m (even
if there are multiple possibilities, any such m is fine), given (x, y), knowing G beforehand.

Following this, we will denote by DLPG the DLP for the group G, and write m = DLPG(x, y)
as an answer to the DLP.4

In fact, we’ve proved that if Eve can solve DLP in polynomial time, then the knowledge
(C,A,B1, B2) can be decrypted in polynomial time into M too as we can compute e = DLPG(C,A)
so that M = B2(B

e
1)

−1. The converse is not yet known. In order to be precise, let us also define
another problem.

Problem (Diffie–Hellman problem (DHP)). Knowing the group G, suppose g ∈ G and that there
exists x, y ∈ N such that A = gx and B = gy. Knowing the values of A, B and g, but not x nor y,
the problem is to find gxy ∈ G.

Following this, we will denote by DHPG the DHP for the group G, and write C = DHPG(A,B, g)
as the answer to the DHP.5

Indeed, in the ElGamal cryptosystem, Eve’s problem is actually a variant of DHP: the problem
of knowing (C,A,B1, B2) and wanting to recover M is actually equivalent to DHPG(A,B1, C),
because once we know the answer D to DHPG(A,B1, C), we see that since B1 = Ck and A = Ca,
then D must be Cak, so B2D

−1 = MAkC−ak = M . What we’ve proved is that if we can easily
solve DLP, then we can also easily solve DHP and the converse is not yet known. That being said,
if one could solve DHP easily, then the ElGamal cryptosystem could’ve been broken as easily. In
other words, we say that the ElGamal cryptosystem relies on the hardness of DHP, which, as same
as RSA, has not yet been proved nor disproved as of now.

However, one can look at the problem in a more special cases of G. Consider the case where G
is an additive group (Z,+). DHP says that suppose we know g ∈ Z and xg, yg ∈ Z, find xyg ∈ Z.
This can be easily solved using basic division: compute x = xg

g and y = yg
g , then compute the

product xyg. Hence, the problem DHP(Z,+) is easy, i.e., all can be done in O(logC(xyg)) time for
a constant C (depending on multiplication and division algorithms, but surely C ≤ 4).

The same can be said when G is the additive group (Z/qZ,+) when q = pr is a prime power.
Now things become a lot more complicated when one looks at F×

q . However, this is still much
easier than the general case. There is an algorithm called index calculus that could be used to
solve DLP (and therefore DHP) for F×

q in subexponential time. This is unfortunately also beyond
the scope of the thesis, see [1] for more information.

Now, since G can be any group, why not let G be the group of an elliptic curve? In fact, by
trying G = E(Fq), it is much harder than the previous cases. As of now, there is no algorithm better
than O(

√
q) to solve DLP for elliptic curves in general. There are, however, algorithms to reduce

some instances into F×
qd

. See [14] for MOV algorithm. This is why the ElGamal cryptosystem
with elliptic curves as the base group are considered for applications in cryptography. Note that
applying ElGamal cryptosystem directly are too unsafe for cryptographic attacks, so in practice,
one would use a combined method such as the Integrated Encryption Scheme (IES). Note that we
call the DLP over E(Fq) as “Elliptic curve discrete logarithm problem (ECDLP)” and the DHP
over E(Fq) as “Elliptic curve Diffie–Hellman problem (ECDHP)”.

Now we go back to the general case and let us describe the O(
√

ord(x)) algorithm to solve
DLPG(x, y). Indeed, an obvious naive way to compute this in O(ord(x)) is to repeatedly compute
x, x2, x3, . . . until we see y at xm and return m. However, if we know the order of the subgroup
generated by x beforehand (denote it by n), then an O(

√
n) algorithm is possible as shown in the

following Algorithm 3.
Note that if the list A has no match with B, then the assumption is false: y cannot be xm

for some 1 ≤ m < n. This is because once we assume y = xm, we can write m = i + jN by the
division algorithm and the corresponding match must be found. This proves the correctness of the
algorithm, and if the matching step between A and B is handled using efficient data structures
such as hash table, then the matching step can be done in O(N) = O(

√
n) steps. Therefore this

algorithm uses O(
√
n) memory and time. In fact, there is a better algorithm with nearly the same

4Note that this is not a standard notation.
5This is also not a standard notation.
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Algorithm 3 Shanks’ Babystep–Giantstep algorithm
Require: A group G, elements x, y ∈ G, and n = ord(x)
Ensure: m ∈ N such that xm = y
N ← d

√
ne

make a list A← [x, x2, . . . , xN ]
z ← (xN )−1

make a list B ← [yz, yz2, . . . , yzN ]
if an element of A matches an element of B, say, xi = yzj then

m← i+ jN . Since xi = yzj = y(x−N )j , we have y = xi+jN .
end if

time complexity but much less memory due to Pollard called Pollard’s ρ algorithm. The detailed
analysis can be found in [15].

We continue with a few more applications of the apparent hardness of DLP and DHP.

1.4.3 Diffie–Hellman Key Exchange
Once we know the DHP, the Diffie–Hellman key exchange is very easy. Consider the scenario
where Alice and Bob want to obtain a shared secret but the communication is done in an insecure
channel. This may look impossible at first but it is actually given by the following method.

1. Alice and Bob agree on a group G and an element g ∈ G such that n = ord(g) is finite.
Everyone knows this information, including the eavesdroppers like Eve.

2. Alice picks a secret integer 1 < a < n. Bob picks a secret integer 1 < b < n.

3. Alice computes A = ga. Bob computes B = gb.

4. Alice publishes A. Bob publishes B. This can be done in an insecure channel.

5. Alice receives B. Bob receives A.

6. Alice computes Ba. Bob computes Ab. This is equal, and this becomes the shared secret.

During the exchange of A and B, Eve may know every public information: G, g,A,B (recall
that A = ga and B = gb), but what Eve won’t be able to figure out easily is gab. This is precisely
the DHP. By assuming the hardness of DHP, it is implied that the key exchange is safe.

The method is explained in a general settings for any group G and any base element g ∈ G
such that ord(g) is finite. However, since we’ve seen that DHP on elliptic curves in general is
expected to be hard, we can take G to be E(Fq) for an agreed curve E over an agreed finite field
Fq, with a predefined point P ∈ E(Fq). This specialization of the Diffie–Hellman key exchange
is known as the “Elliptic Curve Diffie–Hellman (ECDH)” protocol, and can be used for secret
key agreement. Typical uses include the case of making a shared secret for another underlying
symmetric cryptographic protocol.

1.4.4 Elliptic Curve Digital Signature Algorithm (ECDSA)
The goal of the digital signature algorithm is for a person (say, Alice) to digitally sign a document
in a way such that any other person (say, Bob) can verify that the document is indeed signed by
Alice. Here we follow the implementation given in [22].

1. Alice and Bob agree on a finite field Fp, an elliptic curve E/Fp, and a point P ∈ E(Fp) of
prime order N . Everyone, including Eve, knows this information.

2. Alice selects a secret integer 1 < a < N and compute A = [a]P .

3. Alice publishes A. This is the public verification key. The secret a is the private signing key.

4. Suppose Alice wants to sign a document d mod N . Alice chooses a random integer 0 ≤ k < N
and computes [k]A. Let s1 be the x-coordinate (modulo N) of [k]P . Compute (d+ as1)k

−1

in Fp and bring its integer representative between 0 and p − 1 to reduce under modulo N ,
and call this s2. That is, s2 := (d + as1)k

−1 mod N . Alice then publishes (s1, s2) as the
digital signature of the document d.
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5. Suppose Bob wants to verify (s1, s2). Bob computes v1 := ds−1
2 mod N and v2 := s1s

−1
2 mod

N . Bob then computes [v1]P + [v2]A ∈ E(Fp) and check the x-coordinate of this point. If
it is congruent to s1 in modulo N , then the signature is valid. Otherwise, the signature is
invalid.

Since
[v1]P + [v2]A = [ds−1

2 ]P + [s1s
−1
2 ][a]P = [s−1

2 (d+ as1)]P = [k]P,

we see that if (s1, s2) is correct, then the x-coordinate of [k]P (which is s1) must be equal to the
x-coordinate of [v1]P + [v2]A.

1.5 Schoof’s algorithm to count#E(Fq)
In this chapter, we end with Schoof’s algorithm to count the number of rational points over an
elliptic curve over a finite field.

An interesting question is: given an elliptic curve E/Fq, how many rational points are there, i.e.
find #E(Fq). A straightforward algorithm loops over all x ∈ Fq and checks for valid y ∈ Fq. This
runs in O(q2), but by substituting x in the Weierstrass equation for E, we’re left with a quadratic
equation over y, which has either 0, 1, or 2 solutions, depending on the discriminant. Suppose we
want to solve for y ∈ Fq for the equation

Ay2 +By + C = 0,

then the quadratic formula requires computing
√
B2 − 4AC over Fq. If B2 − 4AC = 0, there is

exactly one solution for y. If B2 − 4AC is a square in Fq, then there are two solutions for y.
Otherwise, B2 − 4AC is nonzero and not a square, so there is no solution for y. By computing x
and assuming that we can check whether a value in Fq is a square or not in O(log q), we obtain an
O(q log q) algorithm to count the number of rational points.

This, however, is still exponential in log q. Here let us consider the following algorithm given by
Schoof, which solves the problem in O(log8 q). Recall 33: #E(Fq) ∈ [q+1−2

√
q, q+1+2

√
q]. The

idea is to find #E(Fq) mod k for different values of k and patch them together in the interval using
Chinese remainder theorem. Before going to Schoof’s algorithm, let us consider a few prerequisites
here.

1.5.1 Them-Torsion Points
An important result that gives us the structure of E[m] is the following theorem, which can be
proved using 30, 25, and the characterization of finite abelian groups.

Theorem 35. Let E/K be an elliptic curve and let m ∈ Z∗. If m 6= 0 in K, i.e. char(K) = 0 or
char(K) ∤ m, then

E[m] ∼= Z/mZ× Z/mZ.

Proof. See [22, III.6.4b].

1.5.2 The Tate Module
Consider an isogeny φ : E1 → E2. By restricting it to the set of `-torsion points, it gives φ : E1[`]→
E2[`]. The image is also an `-torsion point because [`]φ(P ) = φ([`]P ) = φ(O) = O for all P ∈ E1[`].

If we take the inverse limit lim←−n
E1[`

n] where ` is a prime, with respect to maps E1[`
n+1]

[ℓ]−→
E1[`

n], we retrieve a structure which is a subset of
∏∞

n=1E1[`
n]. We call this the `-adic Tate

module and denote by Tℓ(E1). This is a Zℓ-module because a pointwise multiplication by elements
from Zℓ ⊆

∏∞
n=1 Z/`nZ gives the necessary properties for it to be a module. Similarly, we construct

Tℓ(E2).
Now (we temporarily forget about E1 and E2 and just consider a general E), since E[`] ∼=

Z/`Z× Z/`Z for all prime ` 6= char(K), we see that the inverse limit is actually

Tℓ(E) := lim←−
n

E[`n] ∼= lim←−
n

Z/`nZ× Z/`nZ.

Passing the limit through the multiplication, we would be left with

Tℓ(E) ∼= Zℓ × Zℓ,
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which is a Zℓ-module, so it is a free module of rank 2 in particular. This allows us, in the future, to
think of endomorphisms of Tℓ(E) as a matrix of entries in Zℓ upon choosing a Zℓ-basis for Tℓ(E).

Since φ induces φ : E1[`]→ E2[`] for all `, it works for `, `2, . . . for ` prime in particular. This
induces a map

φℓ :

∞∏
n=1

E1[`
n]→

∞∏
n=1

E2[`
n].

Now we can restrict this map to Tℓ(E1) and we see that the image is also in Tℓ(E2), so we have

φℓ : Tℓ(E1)→ Tℓ(E2).

Furthermore, this map is Zℓ-linear. This allows us to do linear algebra on isogenies. To capture,
the whole process is a conversion from an isogeny to a Zℓ-linear map between Tate modules, in
other words, our construction gives

Hom(E1, E2)→ Hom(Tℓ(E1), Tℓ(E2))

for any prime `.

1.5.3 The Weil Pairing
Theorem 36. For any elliptic curve E/K, there exists a function

em : E[m]× E[m]→ µµµm

where µµµm is the group of m-th root of unity in K̄, satisfying the following properties:

1. Bilinear:

em(S1 + S2, T ) = em(S1, T )em(S2, T ),

em(S, T1 + T2) = em(S, T1)em(S, T2)

for all S, T, S1, S2, T1, T2 ∈ E[m].

2. Alternating:
em(T, T ) = 1

for all T ∈ E[m].

3. Nondegenerate: For a fixed T ∈ E[m], if

em(S, T ) = 1

for all S ∈ E[m] then T = O.

4. Galois-invariant:
σ(em(S, T )) = em(Sσ, T σ)

for all S, T ∈ E[m] and σ ∈ Gal(K̄/K).

5. Compatible:
emm′(S, T ) = em([m′]S, T )

for all S ∈ E[mm′] and T ∈ E[m].

Proof. We construct such a function explicitly, called the Weil pairing. See [22, III.8] for an explicit
construction. See [22, III.8.1] for the proof that it satisfies these properties.

Now, once we have such eℓn for all n ∈ N on a fixed prime `, we have the maps

eℓn : E[`n]× E[`n]→ µµµℓn .

Taking inverse limit with respect to maps

E[`n+1]
[ℓ]−→ E[`n] and µµµℓn+1

x 7→xℓ

−−−−→ µµµℓn ,

we claim the induced map
e : Tℓ(E)× Tℓ(E)→ Tℓ(µµµ)
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where Tℓ(µµµ) is the Tate module for roots of unity, i.e.

Tℓ(µµµ) = lim←−
n

µµµℓn .

Before finishing the claim, we need to prove that the image of Tℓ(E) × Tℓ(E) by e actually lands
on Tℓ(µµµ). Well suppose P ∈ Tℓ(E) is represented by (Pn)n∈N with Pi ∈ E[`i] for all i ∈ N, and
similarly for Q ∈ Tℓ(E) with (Qn)n∈N. Apply eℓi pointwise to the sequences (Pn)n∈N and (Qn)n∈N
to obtain (eℓn(Pn, Qn))n∈N. Let us check that this sequence satisfies the inverse system for Tℓ(µµµ),
i.e.,

eℓn+1(Pn+1, Qn+1)
ℓ = eℓn(Pn, Qn).

Since Pn = [`]Pn+1 and Qn = [`]Qn+1 by the inverse system of Tℓ(E), we see that it is enough
to check that

eℓn+1(S, T )ℓ = eℓn([`]S, [`]T )

for any S, T ∈ E[`n+1]. By the property 36, we see immediately that this is true, applying
bilinearity and compatibility. This proves that

e : Tℓ(E)× Tℓ(E)→ Tℓ(µµµ)

is well-defined. Moreover, it inherits the properties from 36, making it bilinear, alternating, non-
degenerate, Galois-invariant, and compatible.

Now, we consider an isogeny of E, i.e. φ ∈ Hom(E,E). Then, we can induce it into φℓ ∈
Hom(Tℓ(E), Tℓ(E)). Fix a Zℓ-basis of Tℓ(E), so that one can write the corresponding matrix of φℓ
as (

a b
c d

)
,

with a, b, c, d ∈ Zℓ. This gives a well-defined determinant and trace for φℓ with respect to this
basis. We claim that they are invariant over different bases.

Theorem 37. Let E/K be an elliptic curve. Let φ ∈ Hom(E,E) be an isogeny, and let φℓ ∈
Hom(Tℓ(E), Tℓ(E)) be its induced enodomorphism of Tℓ(E). Then, for any fixed Zℓ-basis of Tℓ(E),
we have

det(φℓ) = deg(φ) and tr(φℓ) = 1 + deg(φ)− deg(1− φ).
In particular, this also shows that det(φℓ) and tr(φℓ) are in Z and don’t depend on `.

Proof. See [22, III.8.6].

1.5.4 The Characteristic Polynomial
What we’ve shown so far is a development towards the important result that forms the basis of
Schoof’s algorithm. By Hasse’s bound, we’ve seen that for any elliptic curve E/Fq, the number
of rational points #E(Fq) is in [q + 1 − 2

√
q, q + 1 + 2

√
q]. Let us denote by a the quantity

q + 1 −#E(Fq), and let us denote by φ the usual q-th power Frobenius map defined on E → E.
The main claim is the following.

Theorem 38. The equation
φ2 − aφ+ q = 0

is satisfied in Hom(E,E).

Proof. (Simplifying the one given by [22, V.2.3.1].) By the results earlier, we see that for any prime
` 6= p,

det(φℓ) = deg(φ) = q

and
tr(φℓ) = 1 + deg(φ)− deg(1− φ) = 1 + q −#E(Fq) = a.

By basic linear algebra, the characteristic polynomial for φℓ is

χ(T ) = det(TI2 −Mat(φℓ)) = T 2 − tr(φℓ)T + det(φℓ) = T 2 − aT + q.

By Cayley–Hamilton theorem, φℓ kills the polynomial, so

φ2ℓ − aφℓ + q = 0.

Now 0 = det(φ2ℓ − aφℓ + q) = deg(φ2 − aφ+ q) so we see that φ2 − aφ+ q = 0 in Hom(E,E).
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1.5.5 The Algorithm of Schoof
We go back to the question of counting #E(Fq) by the idea of patching the solutions modulo small
primes over the range [q + 1 − 2

√
q, q + 1 + 2

√
q] using Chinese remainder theorem. To do that,

we use the equation
φ2 − aφ+ q = 0

and try to compute a mod ` for some small set of `’s. In fact, if φ2 − aφ + q = 0 is true, then it
must be true upon evaluating at a point P , i.e.

φ2(P )− [a]φ(P ) + [q]P = O.

Writing P = (x, y), we have
[a](x, y) = (xq

2

, yq
2

) + [q](x, y).

If furthermore, P is assumed to have order `, then we can write a = b` + c with 0 ≤ c < ` using
the basic division algorithm so that

[a](x, y) = [b`+ c](x, y) = [b] [`](x, y)︸ ︷︷ ︸
O

+[c](x, y) = [c](x, y).

In other words, by considering all `-torsion points (x, y) of E, one can precompute

Q(x,y) = (xq
2

, yq
2

) + [q](x, y)

at first, and then loop over O, (x, y), [2](x, y), . . . , [`−1](x, y) and check if their coordinates match.
Let S(x,y) be the set of indices k such that [k](x, y) = Q(x,y), then it is obvious that

⋂
P∈E[ℓ] SP

is a singleton {k⋆}. Such k⋆ is a mod `. Once we can do this for enough number of `’s, we can
pinpoint a using the Chinese remainder theorem.

Instead of working on the points P ∈ E[`], we work on all of them simultaneously using the
technology of division polynomials.

Theorem 39. For a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

there exists a sequence of polynomials (ψn)n∈N with ψn ∈ Z[a1, a2, a3, a4, a6, x, y] such that ψn

vanishes on precisely the x-coordinates of the nonzero n-torsion points of E and nowhere else for
all n ∈ N.

Proof. Define

b2 = a21 + 4a2

b4 = 2a4 + a1a3

b6 = a23 + 4a6

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24,

and,

ψ1 = 1,

ψ2 = 2y + a1x+ a3,

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8,

ψ4 = (ψ2)(2x
6 + b2x

5 + 5b4x
4 + 10b6x

3 + 10b8x
2 + (b2b8 − b4b6)x+ (b4b8 − b26)),

then inductively by the formulas

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2,

ψ2ψ2m = ψ2
m−1ψmψm+2 − ψm−2ψmψ

2
m+1 for m ≥ 3.

One can (tediously) check that this sequence of polynomials satisfies the required property. This
is taken from [22, Exercise 3.7]. We call this particular sequence of polynomials “the division
polynomials”. Notice that the computation is done rather simply, i.e., computing ψℓ would take
O(`c) for some constant c.
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Now, going back to the algorithm, instead of computing (xq
2

, yq
2

) + [q](x, y) for each point
(x, y), we treat x and y as symbols and compute it in the ring

Rℓ = Fq[x, y]/(ψℓ(x), y
2 + a1xy + a3y − x3 − a2x2 − a4x− a6).

That is, we compute using a polynomial representative in this ring, and when that polynomial has
a nonlinear higher degree terms of y, we replace y2 with x3 + a2x

2 + a4x+ a6− a1xy− a3y so that
the terms of y can be at most degree one. Also, when a polynomial has degree higher than ψℓ,
we divide that polynomial by ψℓ and take its remainder. This allows us to bound the number of
terms of a representative in Rℓ to be at most `2. This completes the algorithm. We present it in
the following pseudocode of Algorithm 4.

Algorithm 4 Schoof’s algorithm
A← 1
`← 3
while A < 4

√
q do

Q← (xq
2

, yq
2

) + [q](x, y) ∈ E(Rℓ)
P ← O
for n = 0, . . . , `− 1 do

if Q = P then
nℓ ← n and break out of the loop

end if
P ← P + (xq, yq)

end for
A← `A
`← the next smallest prime greater than `

end while
use the Chinese remainder theorem to find a such that a ≡ nℓ (mod `) for all used `
return #E(Fq) = q + 1− a

Remark. It would be nice to add another section describing computation of the Weil pairing using
Miller’s algorithm. However, this is already very long, and unfortunately it has to be omitted.
However, one can still find the implementation of this algorithm in the repository given in the
appendix.
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Chapter 2

The Mordell–Weil Theorem for E/Q

In this chapter, we aim to study an important property of E/Q, that is, the group E(Q) is finitely
generated. This is the celebrated Mordell–Weil theorem which we aim to give a prove. Recall that
char(Q) = 0, so that we may work on Weierstrass equations of the form

E : y2 = x3 +Ax+B

with A,B ∈ Q instead of the more general equation.

2.1 The Lutz–Nagell Theorem
Before moving onto the Mordell–Weil theorem, it would be nice to consider a result concerning the
structure of the torsion points of E(Q). This section aims to give a simple algorithm to calculate
the torsion subgroup

E(Q)tors =
⋃
n≥1

E(Q)[n]

of E(Q).
For an elliptic curve E/Q, we consider a special case where its Weierstrass equation has the

form
E : y2 = x3 +Ax+B,

with A,B ∈ Z. In such cases, we specifically say that E is defined over the integers, and write
E/Z. Moreover, if r ≥ 1 is an integer, we write Er for the subset

{(x, y) ∈ E(Q) : νp(x) ≤ −2r, νp(y) ≤ −3r} ∪ {O}

of points on E. Note that this depends on p, but we will often write just Er and will keep in mind
that we agree on a fixed prime p beforehand.

We now take and simplify [24, 8.1] in the following finite sequence of claims.

Proposition 40 ([24, 8.1(2)]). Let E/Z : y2 = x3 + Ax + B. Let p be prime. If (x, y) ∈ E(Q),
then νp(x) < 0 if and only if νp(y) < 0. In such case, there exists an integer r ≥ 1 such that
νp(x) = −2r and νp(y) = −3r.

Proof. Suppose (x, y) ∈ E(Q). We have the equality

2νp(y) = νp(y
2) = νp(x

3 +Ax+B) = min(νp(x3), νp(Ax), νp(B)) = 3νp(x),

where the last equality holds if νp(x) < 0, but if νp(x) ≥ 0 then νp(y) ≥ 0 as well. This proves
that νp(x) < 0 if and only if νp(y) < 0, and in such case, 2νp(y) = 3νp(x). This completes the
proof.

Now, let us define

λ̃r :


Er → Z(p)

(x, y) 7→ p−rx/y

O 7→ 0

where Z(p) ⊆ Q is defined by {a
b
∈ Q : a, b ∈ Z; p ∤ b

}
.
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By 40, if (x, y) ∈ Er then νp(x) = −2r′ and νp(y) = −3r′ for some integer r′ ≥ r. This means
νp(x/y) = r′ ≥ r and so νp(p

−rx/y) = r′ − r ≥ 0, i.e. p−rx/y lands on Z(p), so the map is
well-defined.

Proposition 41 ([24, 8.1(4)]). Let E/Z : y2 = x3 + Ax + B. Let p be prime. If (x, y) ∈ Er but
(x, y) /∈ Er+1 then λ̃r(x, y) /∈ pZ(p).

Proof. Consider the set Er \ Er+1, which is precisely

{(x, y) ∈ E(Q) : νp(x) = −2r, νp(y) = −3r},

so its image under λ̃r is p−r
(

k
p2r

)
/
(

ℓ
p3r

)
for some k, ` ∈ Z not divisible by p. Simplifying this

expression, we have its image as k
ℓ . Since k, ` ∈ Z not divisible by p, we see that this cannot lie in

pZ(p).

Now, the goal is to show that the composition Er
λ̃r−→ Z(p) ↪

η−→ Z(p)/p
4rZ(p) (where η is the

natural modulo map) is a homomorphism of groups, and so we can apply the fundamental homo-
morphism theorem to see that

Er/ ker(η ◦ λ̃r) ∼= im(η ◦ λ̃r)

is an isomorphism of groups.
Consider the following change of coordinates.

Lemma 42 ([24, 8.3]). Let E/Z : y2 = x3 + Ax + B. Let p be prime. We write a change of
coordinates

t =
x

y
and s = 1

y
.

Then (x, y) ∈ Er if and only if νp(s) ≥ 3r. If νp(s) ≥ 3r then νp(t) ≥ r.

Proof. Well νp(s) = νp

(
1
y

)
= −νp(y). If (x, y) ∈ Er then νp(y) ≤ −3r by definition, and so

νp(s) = −νp(y) ≥ 3r. Conversely, if νp(s) ≥ 3r then νp(y) = −νp(s) ≤ −3r. Apply 40 to see that
νp(x) ≤ −2r as well, so (x, y) ∈ Er. This finishes the proof of the first statement.

Now, if νp(s) ≥ 3r, then νp(y) ≤ −3r and νp(x) ≤ −2r. Apply 40 and suppose νp(y) = −3r′
and νp(x) = −2r′ with r′ ≥ r ≥ 1. Then

νp(t) = νp

(
x

y

)
= νp(x)− νp(y) = −2r′ − (−3r′) = r′ ≥ r.

This finishes the proof.

Now, suppose P1, P2 ∈ Er. We consider the line passing through P1 and P2. If P3 is another
point on that line, then P1+P2+P3 = O by the group law on the elliptic curve. If we can manage
to show that P3 ∈ Er also, then it follows that Er is a subgroup, because for any points P,Q ∈ Er,
we have P +Q = −(−(P +Q)+O) and then we can apply the claim twice to see that P +Q ∈ Er.

Consider the line passing through P1 ∈ Er and P2 ∈ Er hitting P3, which is

ax+ by + d = 0

for some a, b, d ∈ Q. But without loss of generality one can assume further that a, b, d ∈ Z.
Dividing by y gives

at+ b+ ds = 0,

so we may work in this (s, t)-coordinate system instead.

Lemma 43 ([24, 8.4]). Let c ∈ pZ(p). Then working in R2, the line t = c may hit the curve
s = t3 + As2t+ Bs3 at a point (s, t) such that s ∈ pZ(p) at most once. The line is not tangent at
the point of intersection.

Proof. Let us prove that it can intersect at most once. Suppose there are two points s1, s2 ∈ pZ(p).
Then (s1, t) and (s2, t) lie on the curve, so s1−s2 = A(s21−s22)t+B(s31−s32). Since we’ve assumped
s1, s2 ∈ pZ(p), write s1 = ps′1 and s2 = ps′2 for s′1, s′2 ∈ Z(p). Suppose νp(s1 − s2) = k, then
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νp(ps
′
1−ps′2) = k so νp(s′1−s′2) = k−1. This means νp(s′1

2−s′2
2
) = νp(s

′
1−s′2)+νp(s′1+s′2) ≥ k−1

and similarly, νp(s′1
3 − s′2

3
) = νp(s

′
1 − s′2) + νp(s

′
1
2
+ s′1s

′
2 + s′2

2
) ≥ k − 1. We have

k = νp(s1 − s2) = νp(A(s
2
1 − s22)t+B(s31 − s32))

≥ min(νp(A(s21 − s22)t), νp(B(s31 − s32)))

= min(νp(A(p2s′1
2 − p2s′2

2
)t), νp(B(p3s′1

3 − p3s′2
3
)))

≥ min(k − 1 + 2, k − 1 + 3)

≥ k + 1,

which can be possible only if k = +∞. This proves that s1 − s2 = 0.
Now, let us prove that the line is not tangent. By implicit differentiation on s = t3+As2t+Bs3,

we see that
ds
dt = 3t2 +As2 + 2Ast

ds
dt + 3Bs2

ds
dt ,

so
ds
dt =

3t2 +As2

1− 2Ast− 3Bs2
.

If t = c is tangent to the curve, then the denominator must be zero (the slope must be infinity),
that is, 1− 2Ast− 3Bs2 = 0. This means 3Bs2+2Ast = 1, but the left hand side belongs to pZ(p)

and the right hand side does not. Hence a contradiction, so it is not tangent to the curve.

Lemma 44. Going back to the main situation, i.e., E/Z : y2 = x3 +Ax+B, p is prime, r ≥ 1 is
an integer, assuming the change of coordinates

t =
x

y
and s = 1

y
.

Assume P1, P2 ∈ Er and that the line passing through the points is

at+ b+ ds = 0,

then d 6= 0.

Proof. Suppose d = 0 then the line is in the form at + b = 0, i.e. t = −b/a. At P1, we see that
at1 + b = 0 but t1 ∈ prZ(p), so νp(b) = νp(a) + νp(t1), i.e. νp(−b/a) = νp(t1) ≥ r. In particular,
−b/a ∈ pZ(p), and so we can apply the previous lemma to see that it hits points with s-coordinate
in pZ(p) at most once. This implies P1 = P2, and so the line must be tangent at the point of
intersection, which contradicts the lemma. This proves that d 6= 0.

Dividing by d 6= 0, such line of intersection becomes

a

d
t+

b

d
+ s = 0,

or, more conveniently,
s = −a

d
t− b

d
.

Lemma 45 ([24, 8.5]). Within this scenario (see previous lemma), we name the quantity −a
d as α

and name the quantity − b
d as β, so that the line of intersection becomes s = αt+ β, then we have

α =
t22 + t1t2 + t21 +As22

1−A(s1 + s2)t1 −B(s22 + s1s2 + s21)
.

Proof. If t1 6= t2, we have α = s2−s1
t2−t1

. Since si = t3i +AS2
i ti +Bs3i for i = 1, 2, we have

(s2 − s1)(1−A(s1 + s2)t1 −B(s22 + s1s2 + s21))

= (s2 − s1)−A(s22 − s21)t1 −B(s32 − s31)
= (s2 −As22t2 −Bs32)− (s1 −As21t1 −Bs31) +As22(t2 − t1)
= t32 − t31 +As22(t2 − t1)
= (t2 − t1)(t22 + t1t2 + t21 +As22).
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This completes the proof in this case. Now if t1 = t2, then s1 6= s2 implies d = 0 which contradicts
the previous lemma, so s1 = s2. This means the line s = αt + β is the tangent at P1 = P2. (Not
to be confused with the line t = c in the previous lemma, which cannot be tangent to the curve!)
We do another implicit differentiation on s = t3 +Ats2 +Bs3 to see that

ds
dt = 3t2 +As2 + 2Ast

ds
dt + 3Bs2

ds
dt ,

i.e.,
ds
dt =

3t2 +As2

1− 2Ast− 3Bs2

as before, which is exactly in the form

α =
t22 + t1t2 + t21 +As22

1−A(s1 + s2)t1 −B(s22 + s1s2 + s21)
.

when t1 = t2 and s1 = s2.

We see further that by this lemma, we have the following claim.

Lemma 46. Following the same scenario (see previous lemma), we have

νp(α) ≥ 2r and νp(β) ≥ 3r.

Proof. By direct computation,

νp(α) = νp

(
t22 + t1t2 + t21 +As22

1−A(s1 + s2)t1 −B(s22 + s1s2 + s21)

)
= νp(t

2
2 + t1t2 + t21 +As22)− νp(1−A(s1 + s2)t1 −B(s22 + s1s2 + s21)︸ ︷︷ ︸

∈pZ(p)

)

= νp(t
2
2 + t1t2 + t21 +As22)

≥ min(2νp(t2), νp(t1) + νp(t2), 2νp(t1), νp(A) + 2νp(s2))

≥ 2r.

Moreover,

νp(β) = νp(s1 − αt1)
≥ min(νp(s1), νp(α) + νp(t1))

≥ 3r.

This completes the proof.

This is enough to deduce the group structure.

Proposition 47 ([24, 8.1(1)]). For an elliptic curve E/Z and any integer r ≥ 1, the set Er is a
subgroup of E(Q).

Proof. Let us show that if P1, P2 ∈ Er has the line at + b + ds = 0 passing through them (where
a, b, d ∈ Z and d 6= 0) hitting another point P3 ∈ E(Q), then P3 ∈ Er also. Well, we write the line
at + b + ds = 0 as s = αt + β with α found using 45. Then we consider the set of points in the
intersection of the line and the elliptic curve, which satisfies the system{

s = αt+ β

s = t3 +As2t+Bs3
.

By eliminating s by substituting s ← αt + β in the equation s = t3 + As2t + Bs3, we see that it
becomes

αt+ β = t3 +A(αt+ β)2t+B(αt+ β)3.

Rearranging the terms, we have

0 = t3 +
2Aαβ + 3Bα2β

1 +Bα3 +Aα2
t2 + . . . ,
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so we can apply Vieta’s formula to see that

t1 + t2 + t3 = −2Aαβ + 3Bα2β

1 +Bα3 +Aα2
.

Apply νp to both sides, we have
νp(t1 + t2 + t3) ≥ 5r,

with the knowledge that νp(1 + Bα3 + Aα2) = 0 and that νp(α) ≥ 2r and νp(β) ≥ 3r by the
previous lemma. Since t1, t2 ∈ pZ(p), we have t3 ∈ pZ(p) also (otherwise νp(t1 + t2 + t3) < 1,
a contradiction). Now, s3 = αt3 + β so νp(s3) ≥ 3r. Apply the characterization 42 to see that
P3 ∈ Er. This proves the group structure.

Now we revisit the map η ◦ λ̃r which we wanted to prove that it is a homomorphism.

Proposition 48 (partial result of [24, 8.1(3)]). For an elliptic curve E/Z, a prime p, and an
integer r ≥ 1, the map

η ◦ λ̃r :

{
Er → Z(p)/p

4rZ(p)

(x, y) 7→ p4rZ(p) + p−rx/y

is a group homomorphism.

Proof. It is enough to use the same notion of P1, P2, P3 ∈ Er on a line and show that (η ◦ λ̃r)(P1)+
(η ◦ λ̃r)(P2) + (η ◦ λ̃r)(P3) = p4rZ(p) + 0, because if this is shown, then for any P,Q ∈ Er,

(η ◦ λ̃r)(P ) + (η ◦ λ̃r)(Q) + (η ◦ λ̃r)(−(P +Q)) = p4rZ(p) + 0

but for any (x, y) ∈ Er, (η ◦ λ̃r)(−(x, y)) = p−rx/(−y) = −p−rx/y = −(η ◦ λ̃r)(x, y), so this would
imply

(η ◦ λ̃r)(P ) + (η ◦ λ̃r)(Q)− (η ◦ λ̃r)(P +Q) = p4rZ(p) + 0

, i.e.
(η ◦ λ̃r)(P +Q) = (η ◦ λ̃r)(P ) + (η ◦ λ̃r)(Q).

Now, let us prove the claim. Write Pi = (xi, yi) as (si, ti) with the usual change of coordinates

ti =
xi
yi

and si =
1

yi

for i = 1, 2, 3. We have

(η ◦ λ̃r)(Pi) = p4rZ(p) + p−r(xi/yi) = p4rZ(p) + p−rti.

So that the sum becomes
3∑

i=1

(η ◦ λ̃r)(Pi) = p4rZ(p) + p−r(t1 + t2 + t3),

but we’ve shown that νp(t1 + t2 + t3) ≥ 5r, so νp(p−r(t1 + t2 + t3) ≥ 4r, that is, p−r(t1 + t2 + t3)
belongs to p4rZ(p). This proves that

3∑
i=1

(η ◦ λ̃r)(Pi) = p4rZ(p)

which completes the proof.

Now we can study the kernel of the map.

Proposition 49 (full result of [24, 8.1(3)]). For an elliptic curve E/Z, a prime p, and an integer
r ≥ 1, the map

η ◦ λ̃r :

{
Er → Z(p)/p

4rZ(p)

(x, y) 7→ p4rZ(p) + p−rx/y

has its kernel as E5r, therefore, the map

λr :

{
Er/E5r → Z(p)/p

4rZ(p)

E5r + (x, y) 7→ p4rZ(p) + p−rx/y

is well-defined. Furthermore, it is an injective homomorphism of additive abelian groups.
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Proof. Let us study the kernel of η ◦ λ̃r. We have

ker(η ◦ λ̃r) = (η ◦ λ̃r)−1(p4rZ(p))

= λ̃−1
r (p4rZ(p))

= {(x, y) ∈ Er : p
−rx/y ∈ p4rZ(p)}

= {(x, y) ∈ Er : νp(x/y) ≥ 5r}
= E5r,

where 40 is used to deduce the last equality. This determines the kernel. Now we apply the
fundamental homomorphism theorem to see that the composition

Er/E5r
∼= im(η ◦ λ̃r) ↪→ Z(p)/p

4rZ(p)

is precisely λr. Since it is an inclusion of an isomorphism, it is an injective homomorphism.

Corollary 50 ([24, 8.6]). Let E/Z : y2 = x3 +Ax+B, p be a prime, r ≥ 1 be an integer. If n > 1
is an integer that is not a power of p, then E1 contains no point of exact order n.

Proof. Suppose P ∈ E1 has order n. Since n is not a power of p, we can write n = pνp(n)k for
some k coprime to p. The point Q = [pνp(n)]P has order k. Let r be the largest integer such that
Q ∈ Er. In particular, Q /∈ E5r so

kλr(E5r +Q) = λr(E5r + kQ) = λr(E5r +O) = p4rZ(p).

Since k is coprime to p, in particular, νp(k) = 0, so

λr(E5r +Q) = p4rZp,

that is, E5r +Q ∈ ker(λr), so Q ∈ E5r, which is a contradiction. Therefore, P does not exist.

We are now ready to state and prove the Lutz–Nagell theorem.

Theorem 51 (Lutz–Nagell). Let E/Z : y2 = x3 +Ax+B. Let P = (x, y) ∈ E(Q). If P has finite
order, then x, y ∈ Z. If furthermore y 6= 0, then y2 | 4A3 + 27B2.

Proof. (Edited from [24, 8.7]) Suppose x or y is not in Z, then there is a prime p dividing the
denominator of one of them. Fixing this prime p, by 40, P ∈ Er for some integer r ≥ 1. Let n
be the order of P and let ` be a prime dividing n. Let Q = [n/`]P ∈ Er, then Q has order `. By
50, since Q ∈ Er ⊆ E1 has exact order `, then ` must be a prime power of p, but it is prime, so
` = p. Let j be the maximum integer such that Q ∈ Ej , so that Q /∈ Ej+1. Apply 41 to see that
λ̃j(Q) /∈ pZ(p). But

pλj(Q) = λj([p]Q) = λj(O) = p4jZ(p),

so λ̃j(Q) ∈ p4j−1Z(p). This contradicts the claim that λ̃j(Q) /∈ pZ(p). It follows that x, y ∈ Z.
Now further assume y 6= 0, then [2]P 6= O. Write [2]P = (x2, y2). Since [2]P has finite order, by

the first part of the theorem we see that x2, y2 ∈ Z. Now we recall the explicit duplication law for E
[22, III.2.3]. Since we’re using E : y2 = x3+Ax+B, we have a1 = 0, a2 = 0, a3 = 0, a4 = A, a6 = B
in E : y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6. By direct computation, we have

b2 = a21 + 4a2 = 0

b4 = 2a4 + a1a2 = 2A

b6 = a23 + 4a6 = 4B

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24 = −A2,

so that the duplication formula

x([2](x, y)) =
x4 − b4x2 − 2b6x− b8
4x3 + b2x2 + 2b4x+ b6

becomes
x2 =

x4 − 2Ax2 − 8Bx+A2

4x3 + 4Ax+ 4B
=
x4 − 2Ax2 − 8Bx+A2

4y2
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for the point P = (x, y). This implies that

y2 | x4 − 2Ax2 − 8Bx+A2.

Since

(3x2 + 4A)(x4 − 2Ax2 − 8Bx+A2)− (3x3 − 5Ax− 27B)(x3 +Ax+B) = 4A3 + 27B2,

and y2 divides both x4 − 2Ax2 − 8Bx+A2 and x3 +Ax+B, we conclude that y2 divides 4A3 +
27B2.

Corollary 52. Let E/Q be an elliptic curve. Then E(Q)tors is finite.

Proof. We claim that there exists a change of variable, i.e., there exists E′/Z isomorphic to E/Q,
so that the rational torsion points of E′ corresponds bijectively to the rational torsion points of E.
Let us give that such change of variable. Let E/Q be given by

E : y2 = x3 +Ax+B, A,B ∈ Q.

Then write A = a
c and B = b

d with a, b, c, d ∈ Z; c, d 6= 0 to get

E : y2 = x3 +
a

c
x+

b

d
.

Now multiply everything by c6d6 to see that

E : c6d6y2 = c6d6x3 + ac5d6x+ bc6d5.

Construct the following change of variable:

s← c3d3y and t← c2d2x.

We have
E : s2 = t3 + ac3d4t+ bc6d5.

So the curve
E′ : y2 = x3 + ac3d4x+ bc6d5

is an elliptic curve over Z which is isomorphic to E. Apply Lutz–Nagell theorem to E′ to see that
E′(Q)tors is finite, and so E(Q)tors is finite as well.

This does not only show that E(Q)tors is finite, but also that since we can do a change of
variables on E into another elliptic curve over Z, we can loop over all y such that y2 divides
4A3 +27B2 and check all possible x to enumerate all the torsion points, and maps them back into
E/Qtors. All can be done in finite (albeit exponential) time with respect to the size of the input,
i.e., log2(A) + log2(B). See the following Algorithm 5 for the pseudocode.

In fact, Lutz–Nagell theorem tells us a list of potential torsion points of E. However, the
procedure of verifying whether a potential point is actually really a torsion point or not deserves
an explanation. The final loop P ∈ T checks whether a potential point P is actually a torsion
point or not. If it were to be a torsion point, then any multiple [n]P of P would also be a torsion
point, but we know that all torsion points lie in T , so [n]P ∈ T in particular. This allows us to
bound the exact order of P by #T + 1. Furthermore, if [n]P = [m]P for some 1 ≥ n < m ≤ #T ,
then [m − n]P = O, meaning that there exists an integer k (in this case it is m − n) such that
[k]P = O with 1 ≤ k ≤ #T . In other words, the list

P, [2]P, [3]P, . . . , [#T + 1]P

has more than #T terms, so either some term here lies outside T (which tells us that P is not
a torsion point), or that two terms are equal (which tells us that there exists k ∈ N∗ such that
[k]P = O).

Furthermore, there are other better algorithms to do this but unfortunately it is out of the
scope of the thesis. See Doud’s method [24, Section 9.6] for reference.
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Algorithm 5 A direct algorithm to enumerate the torsion points
Require: E/Q : y2 = x3 +Ax+B
Ensure: S = E(Q)tors

if A,B /∈ Z then
flag← true
convert E into E/Z using the change of variable in 52

end if
y ← 0, T ← ∅
solve for x in 0 = x3 +Ax+B and add the solutions (x, 0) to the set T
for y = 1, 2, 3, . . . , 4A3 + 27B2 do

if y2 | 4A3 + 27B2 then
solve for x in y2 = x3 +Ax+B and add the solutions (x, y), (−x, y) to the set T

end if
end for
S ← ∅
for P ∈ T do

Q← O
for n = 1, . . . ,#T + 1 do

Q← Q+ P
if Q /∈ T then

erase P from T and continue the outer loop onto the next P ∈ T
end if
if Q = O then

Q = [n]P = O, so add P to S and break this loop
end if

end for
end for
if flag is true then convert S back using the change of variable in 52
end if

2.2 The Weak Mordell–Weil Theorem
Remark. To avoid confusion, in this thesis, if (G,×) is an abelian group, then instead of denoting
by G2 the group of squares, we denote by Gsq the group of squares. It is defined as

Gsq = {g2 : g ∈ G}.

Observe that it is a normal subgroup of G. This notation is made in order to avoid confusion
between the direct product G×G (which is also denoted by G2) and this particular group of squares
Gsq. In the following sections, we write Gn to denote the direct product G×G× · · · ×G︸ ︷︷ ︸

n

.

Now we move to the main part. In order to prove the Mordell–Weil theorem, the main idea
consists of two steps:

1. Weak Mordell–Weil theorem: the group E(Q)/2E(Q) is finite;

2. Descent: assuming that E(Q)/2E(Q) is finite, introduce the notion of height and show that
there exists a finite set of points under a constant height, such that all other points can
descend into this set in a finite number of steps.

In this section we will try to prove the Weak Mordell–Weil theorem first. Normally one would
introduce the idea in the case where E[2] ∈ E(Q) with a particular map φ : E(Q)→ (Q×/Q×sq

)3,
and then prove that the kernel of this map is 2E(Q) and that the image of the map is finite. How-
ever, to keep it shorter, we will directly generalize this idea into the case without the assumption
E[2] ⊆ E(Q), and work with the generalized map (using the same idea) on a field K which would
be a finite extension of Q. To continue, we first introduce the basic notions of algebraic number
theory.

2.2.1 Ring of Integers in an Algebraic Number Field
This subsection aims to explain the following figure 2.1. We will eventually work with K and OK .
This section utilizes [16, §2] as the main reference.
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Remark. The standard notation uses Ā to denote the integral closure of A. However, the bar,
which normally means “closure”, can mean algebraic closure, integral closure, or topological closure,
depending on usage. To avoid confusion, we explicitly write IntClB(A) to denote the integral closure
of A in B, and drop B when it is clear which B we’re working on, writing just IntCl(A). Note
that this is not a standard notation.

Z

Q

K

OK

Frac

IntCl finite extension

Figure 2.1: Ring of integers in an algebraic number field

Definition (Algebraic number field). A field K which makes a finite extension K/Q is said to be
an algebraic number field.

Remark. Since Q is a perfect field, such a finite extension K is always separable.

Definition. Let A ⊆ B be commutative rings, then an element b ∈ B is said to be integral over A
if there exists a nonconstant monic polynomial P ∈ A[T ] such that P (b) = 0. The ring B is said
to be integral over A if every element is integral over A.

Remark. Such polynomial has to be monic, i.e. the leading coefficient is 1 (multiplicative identity
of A), and this is important, because otherwise it is just the definition of algebraic elements over
a ring.

Lemma 53 ([16, (2.3)]). Working with matrices over a ring (instead of a field), we recall the
following result from linear algebra which still holds: Let A be an n× n matrix over a ring R. Let
A∗ be the adjoint matrix, i.e. the transpose of the cofactor matrix C, where Ci,j is (−1)i+jMi,j,
where Mi,j is the determinant of the (n− 1)× (n− 1) matrix obtained by deleting the i-th row and
the j-th column from A. Then,

AA∗ = A∗A = det(A)In.

Proof. The proof follows the standard proof of this statement for matrices over a field (i.e. using
Laplace expansion to compute the determinant, then evaluate the cofactor to see that it equals the
expressions from Laplace expansion), but we see that we are not using any properties of the base
field which are not present for a ring. This allows the result to hold for matrices over a ring.

Proposition 54. We work over a square matrix A of dimension n× n over a ring R. Let x be a
vector over that ring, i.e. x ∈ Rn, then Ax = 0 implies (detA)x = 0, where the latter is just the
multiplication of the vector x by the scalar detA.

Proof. Using the previous lemma, we see that from

A∗A = det(A)In,

we have
0 = A∗0 = A∗Ax = det(A)Inx = det(A)x.

This completes the proof.

Proposition 55 ([16, (2.2)]). Finitely many elements b1, . . . , bn ∈ B are all integral over A if and
only if the ring A[b1, . . . , bn] (viewed as an A-module) is finitely generated.
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Proof. (This follows the one given in [16, (2.2)].) Let us first prove that if b ∈ B is integral over
A then A[b] is a finitely generated A-module. Since b is integral over A, there exists a monic
polynomial f ∈ A[T ] such that f(b) = 0. Write it as

f(T ) =

n∑
i=0

aiT
i

with an = 1 and a0, a1, . . . , an ∈ A where n ≥ 1. Now let c ∈ A[b] be any element. By definition,
there exists g ∈ A[T ] such that g(b) = c. By the division algorithm (since f is monic, we don’t
require A to be a field), one can write g = fq + r with r = 0 or deg(r) < deg(f) = n, so that
g(b) = f(b)q(b) + r(b). But f(b) = 0, so if

r(T ) =

deg(r)∑
i=0

diT
i,

then

c = g(b) = r(b) =

deg(r)∑
i=0

dib
i.

This proves that the set {1, b, b2, . . . , bn−1} generates the A-module A[b]. Now we may do by induc-
tion to prove the general case. Suppose b1, . . . , bn ∈ B are integral over A. Then A[b1, . . . , bn−1] is
finitely generated. Write R = A[b1, . . . , bn−1], then bn is integral over R in particular. This means
R[bn] is a finitely generated R-module. Suppose ω1, . . . , ωr is a generating set of R[bn], where
ω1, . . . , ωr ∈ R[bn]. This means every element x ∈ R[bn] can be written as

∑r
i=1 λiωi for some

λi ∈ R. Since R is a finitely generated A-module, suppose ζ1, . . . , ζs ∈ R is an A-generating set of
R. Then one can write λi =

∑s
j=1 µjζj , for some µj ∈ A for each 1 ≤ j ≤ s. This means such an

element x ∈ R[bn] can be written as

x =

r∑
i=1

λiωi =

r∑
i=1

 s∑
j=1

(µjζj)

ωi =
∑
i,j

µjζjωi.

So the set {ζjωi}1≤j≤s
1≤i≤r

is an A-generating set for R[bn], which is finite. This proves that R[bn] is

a finitely generated A-module. This completes the forward implication.
Now we look at the converse. Suppose A[b1, . . . , bn] is finitely generated, i.e. the elements

ω1, . . . ωr ∈ A[b1, . . . , bn] generates A[b1, . . . , bn]. Then for any b ∈ A[b1, . . . , bn], we also have
bωi ∈ A[b1, . . . , bn], so that for each i there exists ai,1, . . . , ai,r ∈ A such that

bωi =

r∑
j=1

ai,jωj .

Define an r × r matrix A with Ai,j = ai,j . Then the above equation is equivalent to

(bIr −A)x = 0

where

x =


ω1

ω2

...
ωr

 .

Apply the previous proposition to see that det(bIr −A)x = 0 also. Now since 1 ∈ A[b1, . . . , bn], we
have

1 =

r∑
i=1

ciωi

for some c1, . . . , cr ∈ A. Let
v =

(
c1 c2 · · · cr

)
and multiply the equation det(bIr −A)x = 0 by v from the left to see that

v det(bIr −A)x = det(bIr −A)vx = 0,

but vx = 1, so det(bIr − A) = 0. The polynomial χ(T ) = det(TIr − A) is a monic polynomial in
A[T ] where χ(b) = 0. This proves that b is integral over A. This is true for any b ∈ A[b1, . . . , bn],
hence, this completes the proof.
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Theorem 56. The sum of integral elements in B over A are integral over A. The product of
integral elements in B over A are integral over A. In particular, the set of all integral elements in
B over A forms a ring.

Proof. By the previous proposition, if b1, b2, . . . , bn ∈ B are integral over A, then any element
b ∈ A[b1, . . . , bn] are also integral over A since A[b1, . . . , bn, b] = A[b1, . . . , bn] which is a finitely
generated A-module. In particular, if b1, b2 are integral over A, then since b1 + b2 and b1b2 are in
A[b1, b2], they are in fact integral over A.

Proposition 57 ([16, (2.4)]). If A ⊆ B ⊆ C are rings such that C is integral over B and B is
integral over A, then C is integral over A.

Proof. Using the same argument as in the converse direction of 55, let c ∈ C be an element. Pick
a monic polynomial f ∈ B[T ] killing c. Write

f(T ) =

n∑
i=0

biT
i.

Since B is integral over A, the elements b0, . . . , bn are integral over A, so R = A[b0, . . . , bn] is a
finitely generated A-module. Write ζ1, . . . , ζs ∈ R as an A-generating set for R. Since c is integral
over R, R[c] is a finitely generated R-module. Write ω1, . . . , ωr ∈ R[c] as an R-generating set for
R[c]. Then for any x ∈ R[c] there exists λ1, . . . , λr ∈ R such that

x =

r∑
i=1

λiωi.

Further, for each 1 ≤ i ≤ r, since λi ∈ R, there exists µi,1, . . . , µi,s ∈ A such that

λi =

s∑
j=1

µi,jζj .

This gives

x =

r∑
i=1

s∑
j=1

µi,jζjωi,

the existence of µi,j holds for every x ∈ R[c], and so {ωiζj}1≤i≤r
1≤j≤s

is an A-generating set for R[c].

Therefore R[c] = A[b0, . . . , bn, c] is a finitely generated A-module, which means c is integral over
A. This is true for all c ∈ C, so C is integral over A.

This allows us to properly define

Definition. For rings A ⊆ B, we denote by IntClB(A) the set of elements of B which are integral
over A.

Now, a very common situation arises when one picks a base ring A, and let K be its field of
fractions, and let L/K be a finite field extension, then let B := IntClL(A). This gives the following
figure 2.2.

A

K

L

B

Frac

IntCl finite extension

Figure 2.2: Ring of integers in an algebraic number field

Once we plug in A ← Z, and rename L to K, which will be a finite extension of Q (called
algebraic number field), we have the diagram shown in Figure 2.1. Such B will be denoted by OK

and called the ring of integers in K. We consider the following definition.
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Definition. Let K be an algebraic number field. Let S be a finite set of prime ideals of OK , then
we define

OK,S := {x ∈ K : there exists a ∈
⋂
p/∈S

OK\p such that ax ∈ OK} =

ab : a ∈ OK , b ∈
⋂
p/∈S

OK \ p

 .

We state a few results that are required to prove the weak Mordell–Weil theorem here, but the
proofs require basic knowledge in the theory of algebraic number theory.

Theorem 58 ([10, 8.8]). Let K be an algebraic number field. Let S be a finite set of prime ideals
of OK . Then there exists a finite set S′ ⊇ S such that the ring OK,S′ is a PID.

Theorem 59. Let K be an algebraic number field and let S be a finite set of prime ideals of OK .
Then the group O×

K,S is finitely generated.

Further properties can be proved, but are outside the scope of the thesis. We move to the main
map in the next section.

2.2.2 The Map ϕ : E(K)→ (K×/K×sq
)3

Suppose E/Q is an elliptic curve in the form

E : y2 = (x− e1)(x− e2)(x− e3)

with e1, e2, e3 ∈ K where K is an algebraic number field, one defines the map φ : E(K) →
(K×/K×sq

)3 as

(x, y) 7→ (x− e1, x− e2, x− e3) if y 6= 0

O 7→ (1, 1, 1)

(e1, 0) 7→ ((e1 − e2)(e1 − e3), e1 − e2, e1 − e3)
(e2, 0) 7→ (e2 − e1, (e2 − e1)(e2 − e3), e2 − e3)
(e3, 0) 7→ (e3 − e1, e3 − e2, (e3 − e1)(e3 − e2)).

First, we see that for any curve E/Q, our usual Weierstrass equation is y2 = x3 + Ax+ B for
A,B ∈ Q. However, in order for it to be a valid elliptic curve, it must be smooth, i.e. the equation
0 = x3+Ax+B cannot have multiple roots in Q̄, because if there were to be multiple roots at (x⋆, 0),
then the polynomial f(x, y) = y2 − x3 − Ax − B has f(x⋆, 0) = 0 and ∂f

∂x (x⋆, 0) =
∂f
∂y (x⋆, 0) = 0,

so the point (x⋆, 0) becomes singular and so the curve is not an elliptic curve. This means, in Q̄,
one can factorize x3 + Ax + B into (x − e1)(x − e2)(x − e3) with e1, e2, e3 ∈ Q̄ all distinct from
each other. Now, we don’t need to extend fully to Q̄, since e1, e2, e3 are the roots of f(x, 0), we
see that the field extension K = Q(e1, e2, e3) has e1, e2, e3 already. Moreover, we simply see that
K/Q is a finite extension, so K is an algebraic number field. This allows us to define the map φ
for any elliptic curve E/Q with a convenient choice of K. Further, we see that K is separable, but
it might not be normal, so we keep adding a finite number of roots of minimal polynomials that
are not in K yet. This gives a number field K which makes K/Q a finite Galois extension.

The goal of this section is to show that this map φ is a homomorphism, has the kernel of 2E(K),
and the image of this map is finite. Once this is done, by the fundamental homomorphism theorem
for groups we would obtain

E(K)/2E(K) ∼= im(φ)

so that E(K)/2E(K) would be finite. Furthermore, with another little result, we can claim that
E(Q)/2E(Q) is also finite.

Proposition 60. The map φ is a homomorphism of groups.

Proof. (Edited from the first part of [24, 8.14] and a part of [10, 8.11]) We use the same trick as
before: instead of proving that φ(P + Q) = φ(P )φ(Q) for all P,Q ∈ E(K), let us show that for
any P,Q,R ∈ E(K) lying on the same line, φ(P )φ(Q)φ(R) = 1 in (K×/K×sq

)3.
Consider the simple case where at least one of P,Q,R is equal to O. Without loss of generality

let that be R, then P = −Q, but φ(−Q) = φ(Q) because the map Q 7→ −Q fixes the x-coordinate
and negates the y-coorinate, giving the same value in the definition of φ. This means

φ(P )φ(Q)φ(R) = φ(−Q)φ(Q) · 1 = φ(Q)2 = 1
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in K×sq
)3. Now assume that none of the P,Q,R coincide with O. This means the line passing

through three of them cannot be a vertical line. So we assume such line is given by

y = λx+ µ.

Since the points P,Q,R lie on the intersection of this line and the curve y2 = (x−e1)(x−e2)(x−e3),
we see that xP , xQ, xR satisfies

(λx+ µ)2 = (x− e1)(x− e2)(x− e3)︸ ︷︷ ︸
x3+Ax+B

.

Do a change of variable u← x− ei to see that the equation

(λ(u+ ei) + µ)2 = (u+ ei)
3 +A(u+ ei) +B

has three roots: xP − ei, xQ − ei, xR − ei. Expanding the equation, one sees that

λ2(u2 + 2uei + e2i ) + 2λ(u+ ei)µ+ µ2 = u3 + 3u2ei + 3ue2i + e3i +Au+Aei +B.

Apply Vieta’s formula for the product of roots to see that

(xP − ei)(xQ − ei)(xR − ei) = λ2e2i +2eiµ+ µ2 − e3i −Aei −B = (λei + µ)2︸ ︷︷ ︸
∈K×sq

− (e3i +Aei +B)︸ ︷︷ ︸
0

= 1.

Each component of φ(P )φ(Q)φ(R) is 1, so φ(P )φ(Q)φ(R) equals 1. This completes the proof.

Proposition 61. The kernel ker(φ) is 2E(K).

Proof. (This follows the proof given in the second part of [24, 8.14].)
(⊆) We see that O is in both sets. Suppose P ∈ ker(φ) different from O, i.e. P = (xP , yP )

with xP − ei = v2i for some v1, v2, v3 ∈ K×. Then let us show that P can be written as [2]Q for
some Q ∈ E(K). Since we’ve assumed E is in the form y2 = x3 + Ax + B, apply Vieta to see
that e1 + e2 + e3 = 0. Now, the points (ei, vi) for i = 1, 2, 3 denotes a set of points at different x-
coordinates. Apply polynomial interpolation to see that there exists a unique quadratic polynomial
f satisfying

f(ei) = vi for i = 1, 2, 3.

Since the polynomial

f(T ) =
∑
cyc

vi
1

(ei − ej)(ei − ek)
(T − ej)(T − ek)

satisfies the property, it must be this polynomial. Define g(T ) = xP − T − f(T )2. Then g(ei) = 0
for i = 1, 2, 3. Hence g is divisible by (T − e1)(T − e2)(T − e3) = T 3 +AT +B. Working modulo
T 3+AT+B, i.e., in the ring K[T ]/(T 3+AT+B), we see that g is zero in this ring, so xP−T−f(T )2
is zero in this ring. In other words, if f(T ) = u0 + u1T + u2T

2 then

xP − T = (u0 + u1T + u2T
2)2

in the ring K[T ]/(T 3 + AT + B). Working in this ring, one can substitute T 3 ← −AT − B and
T 4 ← −AT 2 −BT . By direct computation in this ring,

xP − T = (u0 + u1T + u2T
2)2

= u20 + 2u0u1T + (u21 + 2u0u2)T
2 + 2u1u2T

3 + u22T
4

= (u20 − 2Bu1u2) + (2u0u1 − 2Au1u2 −Bu22)T + (u21 + 2u0u2 −Au22)T 2.

Since all the terms are in degree less than 3, the coefficients must equate, i.e.,

xP = u20 − 2Bu1u2

−1 = 2u0u1 − 2Au1u2 −Bu22
0 = u21 + 2u0u2 −Au22.
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If u2 = 0 then u1 = 0 also, so f(T ) is constant which means v1 = v2 = v3, so xP − ei = v2i is
constant, i.e. e1 = e2 = e3, hence a contradiction. Now we see that u2 6= 0, so multiplying the last
equation by u1/u32 to see that

0 =
u31
u32

+ 2
u0u1
u22
−Au1

u2
.

Multiply the second equation by 1/u22 to see that

− 1

u22
= 2

u0u1
u22
− 2A

u1
u2
−B,

then subtract these equations to see that(
1

u2

)2

=

(
u1
u2

)3

+A
u1
u2

+B.

Write xQ = u1/u2 and yQ = 1/u2. The equation above tells us that Q = (xQ, yQ) lies on E(K).
Then one can apply the duplication formula to see that [2]Q = P . Therefore, ker(φ) ⊆ 2E(K).

(⊇) If P ∈ 2E(K) then P = [2]Q for some Q ∈ E(K). So φ(P ) = φ([2]Q) = φ(Q + Q) =
φ(Q)2 = 1. That is, P ∈ ker(φ).

Proposition 62. The image im(φ) is finite.

Proof. (Edited from one given in [10].) Let S be the set of prime ideals p such that p divides the
ideal 2(4A3 + 27B2)OK

1. Since

4A3 + 27B2 = disc(x3 +Ax+B) = ((e1 − e2)(e1 − e3)(e2 − e3))2,

we conclude that 2, e1 − e2, e1 − e3, e2 − e3 are invertible in OK,S . Now we keep extending S until
OK,S becomes a PID using 58. Let P ∈ E(K) and write P = (u/t, v/s) with u, t coprime and v, s
coprime. Plugging in the equation for E, we have(v

s

)2
=
(u
t
− e1

)(u
t
− e2

)(u
t
− e3

)
,

which is
v2t3 = s2(u− e1t)(u− e2t)(u− e3t).

Since s and v are coprime, s2 | t3. Since t and u are coprime, t3 | s2. Without loss of generality,
one can replace s and t with a suitable choice of s and t such that t3 = s2, and so there exists
d ∈ OK,S such that t = d2 and s = d3. Plugging in the solution, we reduce into

v2 = (u− e1d2)(u− e2d2)(u− e3d2).

Observe that the numbers u − e1d2, u − e2d2, u − e3d2 are pairwise coprime. This is because if δ
divides both u − e1d2 and u − e2d2, then it must also divide e2u − e1e2d2 and e1u − e1e2d2, and
hence divides (e1 − e2)u. It would also divide (e1 − e2)d2. Since e1 − e2 is a unit, this means δ
divides u and d2, hence also a unit. So they are indeed pairwise coprime. This means, for any
prime ideal p, one valuates

2νp(v) = νp(v
2) = νp(u− eid2)

where i is either 1, 2 or 3. This proves that νp(u − eid2) is even for each i = 1, 2, 3. Therefore,
u− eid2 can be written as a product of γi ∈ O×

K,S and zi ∈ K×sq. This means

xP − αi =
u− eid2

t
= γi d

−2z2i︸ ︷︷ ︸
Ksq

lands in O×
K,S/O

×
K,S

sq. Now, by 59, we see that O×
K,S
∼= (O×

K,S)tors×Z
r, and that O×

K,S

sq ∼= H×Zr

for some H ≤ (O×
K,S)tors. Since (O×

K,S)tors is finite, the quotient O×
K,S/O

×
K,S

sq removes the factor
Zr and becomes finite.

Proposition 63. Suppose K is a field, and L/K is a Galois extension. Let E/Q be an elliptic
curve. If E(L)/2E(L) is finite then E(K)/2E(K) is also finite.

1For ideals, we say a divides b if b ⊆ a.
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Proof. (Edited from one given in the beginning of [10, 8.11].) Consider the natural map η : E(K)/2E(K)→
E(L)/2E(L). Let us show that its kernel is finite. Suppose P ∈ ker(η). This means there exists
Q ∈ E(L) such that [2]Q = P . We define a map cP which takes each σ ∈ Gal(L/K) to σ(Q)−Q.
We have [2]cP (σ) = [2](σ(Q) −Q) = σ([2]Q) − [2]Q = σ(P ) − P = 0. This means cP is a map of
Gal(L/K)→ E[2]. Now we claim that P 7→ cP is injective. If cP = cP ′ then σ(Q)−Q = σ(Q′)−Q′

for all σ ∈ Gal(L/K). This means σ(Q′ −Q) = Q′ −Q for all σ ∈ Gal(L/K), i.e. Q′ −Q is fixed
by the Galois group, so Q′ −Q ∈ E(K), so P ′ − P ∈ 2E(K), i.e. P = P ′ in E(K)/2E(K). Now
that we’ve proved that P 7→ cP which is defined on ker(η)→ F (Gal(L/K), E[2]), is injective, so

# ker(η) ≤ #F (Gal(L/K), E[2]) = (#Gal(L/K))#E[2]

which is finite. Now the kernel of η is finite, we can apply the fundamental homomorphism theorem
to see that

(E(K)/2E(K))/ ker(η) ∼= im(η) ↪→ E(L)/2E(L),

so E(K)/2E(K) must be finite.

We piece everything together in the following weak Mordell–Weil theorem

Theorem 64 (Weak Mordell–Weil). Let E/Q be an elliptic curve. Then E(Q)/2E(Q) is finite.

Proof. First we extend using a finite Galois extension K/Q which gives the base number field for
all the theorems. Now we define the map φ : E(K) → (K×/K×sq

)3 as in the beginning of this
subsection. By 60, φ is a homomorphism of groups. By 61, the kernel of φ is 2E(K). By 62, the
image of φ is finite. This proves that the group

E(K)/2E(K)

is finite. By 63, since K/Q is a finite Galois extension, we see that

E(Q)/2E(Q)

is also finite.

2.3 Mordell–Weil Theorem for E/Q
Now that the weak Mordell–Weil theorem is finished, we are ready to descend. By the weak
Mordell–Weil theorem, we can write E(Q)/2E(Q) as the set of cosets

2E(Q) +R1, . . . , 2E(Q) +Rn

for some representatives R1, . . . , Rn ∈ E(Q). The idea now is for any point P ∈ E(Q), we try to
write

P = Rα(1) + [2]P1

for some α(1) ∈ {1, . . . , n}. Then we continue

P1 = Rα(2) + [2]P2

and so on, such that P1 is in some way “less than” P , and P2 is “less than” P1, and so on, until
Pm is “small enough”. In this way, if we can show that there exists a constant, such that there
are only finitely many points smaller than or equal to that constant, then we see that P can be
written as a sum of points from that set and points from the set {Ri}ni=1. The measuring device
will be called height, which will be introduced in the following subsection.

2.3.1 Height
For a number a

b ∈ Q with gcd(a, b) = 1, we define

H
(a
b

)
= max(|a|, |b|) and h

(a
b

)
= logH

(a
b

)
.

In the context of elliptic curve E/Q, if (x, y) ∈ E(Q) then we define h(x, y) := h(x) and
H(x, y) = H(x), with the special case of H(O) = 1 and h(O) = 0.

Further from that, we see that the height has some nice properties, but there can be a better
function with even better properties.
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Theorem 65 ([24, 8.18]). Let E/Q be an elliptic curve. There exists a function ĥ : E(Q)→ R≥0

with the following properties.

1. ĥ(P ) ≥ 0 for all P ∈ E(Q).

2. There is a constant c0 such that | 12h(P )− ĥ(P )| ≤ c0 for all P .

3. Given a constant c, there are only finitely many points P ∈ E(Q) with ĥ(P ) ≤ c.

4. ĥ([m]P ) = m2ĥ(P ) for all integers m and all points P .

5. ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q) for all P,Q.

6. ĥ(P ) = 0 if and only if P is a torsion point.

In order to establish the proof of existence of such function, we go through a short sequence of
lemmas.

Lemma 66 ([24, 8.20]). Let c1, c2, d1, d2 ∈ Z. Then

max(|c1|, |d1|)max(|c2|, |d2|) ≤ 2max(|c1c2|, |c1d2 + c2d1|, |d1d2|).

Proof. One can do a direct case analysis, which gives an elementary proof. See [24, 8.20].

Lemma 67 ([24, 8.21]). Let c1, c2, d1, d2 ∈ Z with gcd(c1, d1) = gcd(c2, d2) = 1. Then

gcd(c1c2, c1d2 + c2d1, d1d2) = 1.

Proof. Simple case analysis. See [24, 8.21].

Now the current goal is to bound the quantity

|h(P +Q) + h(P −Q)− 2h(P )− 2h(Q)|

by a constant. To do this, we bound h(P +Q) + h(P −Q)− 2h(P )− 2h(Q) from above and from
below.

Lemma 68 (from above). For a fixed E/Q, there exists a constant c′′ > 0 such that

h(P +Q) + h(P −Q) ≤ 2h(P ) + 2h(Q) + c′′

for all P,Q ∈ E(Q).

Proof. (Given by [24, 8.19].) Suppose E/Z is given by y2 = x3 + Ax + B with A,B ∈ Z.
Let P = (a1/b1, y1) and Q = (a2/b2, y2) be points on E(Q) so that P + Q = (a3/b3, y3) and
P − Q = (a4/b4, y4) have y1, y2, y3, y4 ∈ Q with a1, a2, a3, a4, b1, b2, b3, b4 ∈ Z with gcd(a1, b1) =
gcd(a2, b2) = gcd(a3, b3) = gcd(a4, b4) = 1. Let

g1 = 2(a1b2 + a2b1)(Ab1b2 + a1a2) + 4Bb21b
2
2

g2 = (a1a2 −Ab1b2)2 − 4B(a1b2 + a2b1)b1b2

g3 = (a1b2 − a2b1)2.

So that
a3
b3

+
a4
b4

=
g1
g3

and a3a4
b3b4

=
g2
g3
. (?)

Apply 67 on a3, a4, b3, b4 to see that gcd(a3a4, a3b4 + b3a4, b3b4) = 1. Therefore, there exists
x, y, z ∈ Z such that

a3a4x+ (a3b4 + b3a4)y + b3b4z = 1.

Multiplying both sides by g3, we have

g3(a3a4)x+ g3(a3b4 + b3a4)y + g3(b3b4)z = g3,

and substituting from (?), we have

g2(b3b4)x+ g1(b3b4)y + g3(b3b4)z = g3.
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Therefore, b3b4 divides g3, so |b3b4| ≤ |g3|. Similarly, |a3a4| ≤ |g2|. Using (?) again, one sees that

|a3b4 + a4b3| ≤ |g1|.

This means (implicitly applying 66),

H(P +Q)H(P −Q) = max(|a3|, |b3|)max(|a4|, |b4|)
≤ 2max(|a3a4|, |a3b4 + a4b3|, |b3b4|)
≤ 2max(|g2|, |g1|, |g3|).

Let H1 = max(|a1|, |b1|) and H2 = max(|a2|, |b2|), then

|g1| = |2(a1b2 + a2b1)(Ab1b2 + a1a2) + 4Bb21b
2
2|

≤ 2(H1H2 +H2H1)(|A|H1H2 +H1H2) + 4|B|H2
1H

2
2

≤ 4(|A|+ 1 + |B|)H2
1H

2
2 .

Similarly,
|g2| ≤ ((1 + |A|)2 + 8|B|)H2

1H
2
2 , |g3| ≤ 4H2

1H
2
2 .

Therefore,
H(P +Q)H(P −Q) ≤ CH2

1H
2
2 = CH(P )2H(Q)2

for some constant C > 0. Taking logarithms gives the desired inequality.

Lemma 69 (from below). For a fixed E/Q, there exists a constant c′ > 0 such that

2h(P ) + 2h(Q)− c′ ≤ h(P +Q) + h(P −Q)

for all P,Q ∈ E(Q).

Proof. This follows [24, 8.22]. Fix an elliptic curve E/Q. Let us first show that there exists a
constant C2 such that for all R ∈ E,

4h(R) ≤ h([2]R) + C2.

Write R = (a/b, y) with a, b ∈ Z, y ∈ Q, and gcd(a, b) = 1. Define

h1 = a4 − 2Aa2b2 − 8Bab3 +A2b4

h2 = (4b)(a3 +Aab2 +Bb3)

∆ = 4A3 + 27B2

r1 = 12a2b+ 16Ab3

r2 = 27Bb3 + 5Aab2 − 3a3

s1 = 4∆a3 − 4A2Ba2b+ 4A(3A3 + 22B2)ab2 + 12B(A3 + 8B2)b3

s2 = A2Ba3 +A(5A3 + 32B2)a2b+ 2B(13A3 + 96B2)ab2 − 3A2(A3 + 8B2)b3,

so that r1, r2, s1, s2 ∈ Z[a, b] (one can see them as polynomials in two variables, then plug a and b
into the polynomials to retrieve the numbers) such that

4∆b7 = r1h1 + r2h2

4∆a7 = s1h1 + s2h2.

In this view, r1, r2, s1, s2 are homogeneous polynomials over a, b of degree 3. But for any homoge-
neous polynomial

p(x, y) = c0x
3 + c1x

2y + c2xy
2 + c3y

3,

we have
|p(a, b)| ≤ (|c0|+ |c1|+ |c2|+ |c3|)max(|a|, |b|)3.

Suppose |b| ≥ |a|, then

|4∆||b|7 ≤ |r1(a, b)||h1|+ |r2(a, b)||h2|
≤ C1|b|3 max(|h1|, |h2|),
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for some constant C1 independent of R. Therefore,

|4∆||b|4 ≤ C1 max(|h1|, |h2|).

Let d = gcd(h1, h2). Then d divides r1h1 + r2h2 = 4∆b7, and d divides s1h1 + s2h2 = 4∆a7. Since
gcd(a, b) = 1, we have d divides 4∆ and so d ≤ |4∆|. We have, by the duplication formula, that

H([2]R) = H(x[2]R)

= H

(
x4 − 2Ax2 − 8Bx+A2

4x3 + 4Ax+ 4B

)
= H

(
a4 − 2Aa2b2 − 8Bab3 +A2b4

4b(a3 + 4Aab2 + 4Bb3)

)
= H(h1/h2)

= max
(
|h1|
d
,
|h2|
d

)
.

Therefore,

|4∆|H(R)4 = |4∆||b|4

≤ C1 max(|h1|, |h2|)

≤ C1|4∆|max
(
|h1|
d
,
|h2|
d

)
≤ C1|4∆|H([2]R).

Dividing by |4∆| and taking logarithms gives

4h(R) ≤ h([2]R) + C2

for some constant C2 independent of R. The case where |a| ≥ |b| is similar. Apply 68 for P ← P+Q
and Q← P −Q to see that

h([2]P ) + h([2]Q) ≤ 2h(P +Q) + 2h(P −Q) + c′′.

Then we apply the claim above to see that

4h(P ) + 4h(Q)− 2C2 ≤ 2h(P +Q) + 2h(P −Q) + c′′,

so we pick c′ := C2 +
c′′

2 to see that

2h(P ) + 2h(Q)− c′ ≤ h(P +Q) + h(P −Q).

This completes the proof.

Lemma 70 ([24, 8.19]). For a fixed E/Q, there exists a constant c1 > 0 such that

|h(P +Q) + h(P −Q)− 2h(P )− 2h(Q)| ≤ c1

for all P,Q ∈ E(Q).
Proof. Apply 69 and 68.

Now we’re ready to prove the main theorem 65.

Proof of Theorem 65. (This follows [24, 8.18].) We explicitly define

ĥ(P ) :=
1

2
lim
n→∞

1

4n
h([2n]P ).

To prove that the limit exists, we have

lim
n→∞

1

4n
h([2n]P ) = h(P ) +

∞∑
j=1

1

4j
(h([2j ]P )− 4h([2j−1]P )).

By the main lemma 70, plugging in Q← P to see that

|h([2]P )− 4h(P )| ≤ c1

for all P ∈ E(Q), and so the quantity h([2j ]P ) − 4h([2j−1]P ) is bounded by c1. This means the
infinite sum is bounded by sums of c1

4j , hence converges. Therefore, ĥ(P ) exists. We’re left with
just simply checking the properties of ĥ defined in this way. See [24, 8.18] for full proof.

45



2.3.2 Descent
Having a well-defined ĥ, we’re ready to descend.

Theorem 71 (Mordell–Weil for E/Q). For any E/Q, the group E(Q) is finitely generated.

Proof. (This follows the one given in [24].) Let R1, . . . , Rn ∈ E(Q) be the representatives for
elements of E(Q)/2E(Q). Let

c = max
1≤i≤n

ĥ(Ri)

and let {Q1, . . . , Qm} be the set of points with ĥ(Qi) ≤ c. This is a finite set by Theorem 65.
Let G be the subgroup of E(Q) generated by R1, . . . , Rn, Q1, . . . , Qm. We claim that G = E(Q).
Suppose not, then E(Q) \ G is nonempty. Pick a random point in this set and we see that there
are only finitely many points of height less than this point. Let P be the point with the smallest
height in this collection of finitely many points. Observe that P ∈ E(Q) so it can be projected
into a unique class 2E(Q) +Ri for some 1 ≤ i ≤ n, so that P −Ri ∈ 2E(Q). Write

P −Ri = [2]Q

for some Q ∈ E(Q). By 65,

4ĥ(Q) = ĥ([2]Q)

= ĥ(P −Ri)

= 2ĥ(P ) + 2ĥ(Ri)− ĥ(P +Ri)

≤ 2ĥ(P ) + 2c+ 0

< 2ĥ(P ) + 2ĥ(P ) = 4ĥ(P ).

This proves that Q has smaller height than P , so it must be in G. But Ri ∈ G so P = [2]Q+Ri ∈ G
also, a contradiction. This proves that E(Q) = G, and completes the proof of the Mordell–Weil
theorem.

Remark. The actual Mordell–Weil theorem gives the result in a more general settings, namely for
all elliptic curves over algebraic number fields. Unfortunately this is beyond the scope of the thesis,
but we note that for a given number field K one can extend into another L such that L/K is a
finite Galois extension, so that E can be written as

E : y2 = (x− e1)(x− e2)(x− e3)

for some e1, e2, e3 ∈ L. Then the weak Mordell–Weil theorem applies using the map

φ : (L×/L×sq
)3.

The descent from the weak Mordell–Weil theorem to the full Mordell–Weil theorem requires a more
general notion of height, defined on algebraic number fields.

Remark. Once the Mordell–Weil theorem is proved. We apply the classification of finitely generated
abelian groups to see that any elliptic curve E/Q has the group E(Q) isomorphic to

Zr × E(Q)tors

with finite E(Q)tors. Lutz–Nagell theorem allows a computation for E(Q)tors. However, as of today
there are still no known general algorithm to compute the integer r, which is called the rank of the
elliptic curve. This mysterious quantity plays a role in more important problems in the modern
theory of elliptic curves, including the Birch–Swinnerton-Dyer conjecture. The theory behind the
computations of the rank reamins interesting in its own right, and perhaps, worth discussing in
another day.
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Appendix A

Implementation

The implementation mostly follows [22, Chapter IX]. Arithmetics of finite fields follows [11].

A.1 Arithmetics of finite fields
For the case of Fp with p prime, elements are kept as an integer representative between 0 to
p − 1. Addition and multiplication can be done modulo p directly. The additive inverse of x ∈
{0, . . . , p− 1} is p− x if x 6= 0 and 0 otherwise. The multiplicative inverse of x ∈ {0, . . . , p− 1} is
xp−2 mod p, which can be computed using at most 2 log p multiplications in Fp.

For the more general case of Fq with q = pr, where p is prime and r > 1 is an integer, we use
the following theorem.

Theorem 72. For a prime number p and an integer r ≥ 1, Fpr ∼= Fp[T ]/(µ) for any irreducible
polynomial µ of degree exactly r.

Proof. We assume the basic fact from algebra that every finite fields of the same order are isomor-
phic. Hence we’re left with proving that Fp[T ]/(µ) is a field of order pn. This is actually simple.
Recall the following results from algebra:

• The quotient of a PID by a maximal ideal gives a field.
• In a PID R, an element x ∈ R is irreducible if and only if (x) is a maximal ideal.

Since µ ∈ Fp[T ] is irreducible, (µ) is maximal, so Fp[T ]/(µ) is a field. Now we enumerate the
elements

∑r−1
i=0 aiT

i with (ai)
r−1
i=0 ∈ Fr

p. No two elements of these coincide, and any other elements
of Fp[T ] must have degree at least r, which would coincide (using the identification from the
quotient ring) with some element in this enumeration. This means #(Fp[T ]/(µ)) = pr and hence
completes the proof.

By this theorem, we compute objects in Fq using Fp[T ] as a representative for each element,
and we do computation modulo the ideal (µ) for a fixed irreducible µ ∈ Fp[T ]. Addition and mul-
tiplication corresponds to polynomial addition (modulo µ). The additive inverse is the polynomial
with each of the coefficients its additive inverse in Fp. The multiplicative inverse is done by the
Itoh–Tsujii algorithm [8] described below (following the details given by [17]).

A.1.1 Itoh–Tsujii Algorithm
Here we describe an algorithm to invert an element of Fq = Fpn ∼= Fp[T ]/(µ). In actual com-
putation, the algorithm receives an input f ∈ Fp[T ] and returns an output g ∈ Fp[T ] such that
f(T )g(T )− 1 ∈ (µ).

The idea is that if α ∈ F×
pn then α−1 = αr−1

αr for any r ≥ 1. We choose an appropriate r, say
r =

∑n−1
i=0 p

i = pn−1
p−1 . Then we claim that αr ∈ Fp for all α ∈ F×

pn . Once this is done then α−1 is
just the product of 1

αr (invert αr in Fp) and αr−1 (compute this using Frobenius endomorphisms).
Let us prove the claim first.

Proposition 73. For a fixed prime p and an integer n ≥ 2, for any α ∈ F×
pn , let r = pn−1

p−1 ∈ N,
then we have αr ∈ Fp.

Proof. Well (αr)p−1 = αpn−1 = 1 by Lagrange’s theorem on F×
pn . So αr is a root of Xp−1− 1 = 0.

But consider F×
p ⊆ F×

pn and by Lagrange’s theorem on F×
p , ap−1 = 1 for all a ∈ F×

p . This gives a

47



list of roots of Xp−1−1 = 0 in Fp, which is precisely F×
p . There are p−1 elements on this list, and

the polynomial has degree p− 1, so there cannot be other elements in Fpn satisfying this equation.
Since αr satisfies the equation, it belongs to the list, i.e. αr ∈ F×

p ⊆ Fp.

Now that the claim is finished, we consider the method (following [17]) to compute αr−1 from
α. Consider the following map

Φj :

{
Fpn → Fpn

α 7→ αpj

.

In other words, the action of Φj is repeatedly applying Frobp for j times. Now we consider that
r − 1 =

∑n−1
i=1 p

i. We do the following process to define the sequence (tj)j∈N as

t1 = Φ1(α) = αp

t2 = t1Φ1(t1) = αp+p2

t3 = t2Φ2(t2) = αp+p2+p3+p4

t4 = t3Φ4(t3) = αp+p2+p3+p4+···+p8

...
...

...

Concretely, construct t1 = Φ1(α) and for i = 2, . . . , dlog2(r)e, construct

ti := ti−1Φ2i−2(ti−1).

And so we can recover αp+p2+···+pn−1

= αr−1 in no more than 2 log2(r) multiplications within
(ti)

dlog2(r)e
i=1 . Consider the following pseudocode.

Algorithm 6 Itoh–Tsujii Algorithm
Require: n ≥ 2, p prime, f ∈ Fp[T ], µ monic and irreducible of degree n
Ensure: f(T )g(T )− 1 ∈ (µ)

r ← pn−1
p−1

L← dlog2(r)e
t1 ← Φ1(f(T )) mod (µ)
for i = 2, . . . , L do

ti ← ti−1Φ2i−2(ti−1) mod (µ)
end for
G← n− 1 . We will compute f(T )p+p2+···+pG .
g ← 1

while G > 0 do . Loop invariant: g(T )f(T )p+p2+···+pG mod (µ) = 1.
B ← blog2(G)c+ 1 . The quantity B = blog2(G)c+ 1 is the bit length of G.
g ← gΦG−2B−1(tB) mod (µ)
G← G− 2B−1 . The quantity 2B−1 denotes the most significant bit.

end while

The algorithm given by Algorithm 6 is implemented to invert α ∈ F×
pn , represented by f ∈ Fp[T ]

modulo (µ) into g ∈ Fp[T ] so that fg ≡ 1 modulo (µ).

A.1.2 Shanks–Tonelli Algorithm
The goal of this subsection is to compute a square root (if exists) of an element in a finite field.
We begin with Euler’s criterion.

Theorem 74 (Euler’s criterion). Let p be an odd prime and n ∈ N∗. For a fixed α ∈ F×
pn , there

exists β ∈ F×
pn such that α = β2 if and only if α pn−1

2 = 1 in Fpn .

Proof. We recall the fact that F×
pn
∼= Z/(pn − 1)Z as a group isomorphism, so by Lagrange’s

theorem, for any α ∈ F×
pn , αpn−1 = 1 in Fpn . Since p is an odd prime, pn−1

2 is a well-defined
integer so that 0 = αpn−1− 1 = (α

pn−1
2 − 1)(α

pn−1
2 +1) in Fpn . Since Fpn is a field, it is a domain

in particular, so at least one of α pn−1
2 − 1 and α

pn−1
2 + 1 must be zero.

Now, if there exists β ∈ F×
pn such that β2 = α, then α

pn−1
2 = βpn−1 = 1 in Fpn (the last

equality follows from Lagrange’s theorem once again), this proves the forward direction.
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Observe that what we’ve just proved is that if an element is a nonzero square then it is a root
of X pn−1

2 − 1 = 0 in Fpn . Now we can list all the possible nonzero squares:

12, 22, . . . ,

(
pn − 1

2

)2

,

(
pn + 1

2

)2

, . . . , (pn − 1)2

but we’re sure that (pn + x)2 = x2 in Fpn , and furthermore, (pn − x)2 = x2 in Fpn also. This
means, 12, . . . ,

(
pn−1

2

)2
is the complete list of nonzero squares in Fpn . Also if x2 = y2 then

(x − y)(x + y) = 0, so these list has pairwise distinct elements since for any pair, the difference
and the sum are both nonzero. This means we’ve identified the pn−1

2 nonzero squares. By what
we’ve proved earlier, these are roots of X pn−1

2 − 1 = 0, which is a polynomial equation of degree
pn−1

2 , giving at most pn−1
2 roots. Since we gave exactly pn−1

2 roots, we see that any other element
outside the list fails to satisfy the equation X

pn−1
2 − 1 = 0. This means, for any α ∈ F×

pn , if there
is no β ∈ F×

pn such that β2 = α, then α does not belong to the list of nonzero squares, and hence
fails to satisfy the equation X

pn−1
2 − 1 = 0. So α pn−1

2 6= 1.

Remark. Furthermore, for an element α ∈ F×
pn , if α pn−1

2 6= 1 in Fpn , then α
pn−1

2 = −1 for sure,
because α pn−1

2 is a root of X2 − 1 = 0 in Fpn , since αpn−1 = 1 in Fpn by Lagrange’s theorem on
F×
pn .

Now let us consider the Shanks–Tonelli algorithm, which will be used to compute a square root
of α in Fpn , assuming that there exists one (we check using the value of α pn−1

2 by Euler’s criterion).
First, we try to find an element z ∈ F×

pn such that it is not a square, i.e. z pn−1
2 = −1 in Fpn by

the previous remark. This is possible since pn−1
2 elements are squares and 1 element is zero, so

the other pn−1
2 elements are nonsquares. By randomly picking an element from F×

pn , there is a 1
2

chance of getting a nonsquare. Now that we assume that we’ve constructed a nonsquare z ∈ F×
pn ,

first we write pn − 1 as Q2S where S := ν2(p
n − 1). So Q is an odd integer. Now let R := α

Q+1
2

then R2 = (αQ)(α). If αQ = 1 then we’re done: return R so that R2 = α. Otherwise, we have the
following loop invariant (at i = 0 at first, and for t = αQ):

R, t ∈ F×
pn ;

R2 = αt;

t2
S−i−1

= 1.

(Note that for i = 0 and t = αQ, the last invariant holds because t2S−i−1

= α
Q2S

2 = α
pn−1

2 which
equates to one by Euler’s criterion.)

Now we will do a loop to refine R and t, i.e., find another R and t such that the loop invariant
holds for i+1. Indeed, since we knew that t2S−i−1

= 1, if t2S−i−2

= 1 also then we don’t have to do
anything: the same R and t works for the next i. Otherwise, t2S−i−2 must be −1 since its square
equals 1. The idea is to find a value b ∈ F×

pn such that when we update R← Rb and t← tb2, the
invariant holds. We can easily see that the invariant R2 = αt holds no matter how we choose b to
be. The important part is to choose b such that (tb2)2

S−i−2

= 1, i.e.,

t2
S−i−2︸ ︷︷ ︸
−1

b2
S−i−1

= 1,

that is, find b such that b2S−i−1

= −1. This can be done using the knowledge of z. We knew that
z

Q2S

2 = z
pn−1

2 = −1. If we let B0 = zQ then B2S−1

0 = −1. Then we do B1 = B2
0 to see that

B2S−2

1 = −1 and so on. Concretely, we can iteratively compute Bi = B2
i−1 so that B2S−i−1

i = −1.
And so in this stage, the problem of finding b become trivial–pick b = Bi. Continuing the main
iteration like this, we end up at i = S − 1 and the loop invariant becomes

R, t ∈ F×
pn ;

R2 = αt;

t2
0

= 1.

In other words, R2 = α. This is concretely described by the following pseudocode of Algorithm 7.
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Algorithm 7 Shanks–Tonelli Algorithm

Require: n ∈ N∗, p ≥ 3 prime, α ∈ F×
pn , α pn−1

2 = 1
Ensure: R2 = α
z ← 1Fpn

while z pn−1
2 6= −1 do

z ← random number in F×
pn

end while
S ← ν2(p

n − 1)

Q← pn−1
S

B0 ← zQ

for i = 1, . . . , S − 1 do
Bi ← B2

i−1

end for
R← α

Q+1
2

t← αQ

for i = 1, . . . , S − 1 do
if t2S−i−1

= 1 then
b← 1

else
b← Bi−1

end if
R← Rb
t← tb2

end for

A.2 Random points on an elliptic curve
An important implementation detail required to implement the algorithms (i.e. computing the
Weil pairing) is “generate a random point from a given elliptic curve”. For a given Weierstrass
equation E : y2 = x3 +Ax+B, this can be done by randomly generating an integer x ∈ Fpn then
find the square root (if exists) of the number x3 + Ax + B ∈ Fpn . If this exists, then we call it
y and take (x, y) to be a random point on the curve. This is enough to find a point that doesn’t
coincide with a predefined set of points, by direct rejection sampling.

A.3 Source code
The source code is published at https://github.com/plumsirawit/comp-ec. The author regrets
that the current implementation has two problems:

• The implementation for Schoof’s algorithm isn’t given. The difficulty lies in algebraic manip-
ulation of the ring Rℓ on elliptic curves, since not all elements are invertible. This is actually
solved by giving a completely different method to compute [q](x, y). The original paper of
Schoof [21] has already given all the details for computation in Rℓ. Also [12, Chapter II]
gives useful results about computation with the division polynomials.

• The irreducibility test for polynomials is given only for polynomials of degree no more than
three, since just “plugging in all possible roots to see if it factors” is enough to check the
irreducibility. However, for a more general settings one has to use some stronger algorithms.
See [11, Chapter 10] for a list of simple other options. Note that even if this irreducibility
test is implemented, it loops over all elements of Fp, hence taking exponential time in log p.
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